
Automatic Rule Ordering for Dynamic Scripting

Timor Timuri and Pieter Spronck and Jaap van den Herik
Universiteit Maastricht

Maastricht ICT Competence Centre, Institute for Knowledge and Agent Technology
P.O. Box 616, 6200 MD Maastricht, The Netherlands

p.spronck@micc.unimaas.nl

Abstract

The goal of adaptive game AI is to enhance computer-
controlled game-playing agents with (1) the ability to self-
correct mistakes, and (2) creativity in responding to new sit-
uations. Dynamic scripting is a reinforcement learning tech-
nique that realises fast and reliable online adaptation of game
AI. It employs knowledge bases which contain rules that can
be included in game scripts. To be successful, dynamic script-
ing requires a mechanism to order the rules that are selected
for scripts. So far, rule ordering was achieved by a manually-
tuned priority value for each rule. In the present research,
we propose three mechanisms to order rules automatically for
dynamic scripting. We performed experiments in which we
let dynamic scripting, using each of the three mechanisms,
play against manually-designed tactics. Our results show
that dynamic scripting with automatic rule ordering generates
game AI that is at least as effective as dynamic scripting with
manually-tuned priority values. Moreover, it has the ability
to generate novel game AI with significantly increased effec-
tiveness. The costs are a slight decrease in learning efficiency.
So, we may conclude that automatic rule ordering is a valu-
able enhancement for dynamic scripting.

Introduction
The behaviour of computer-controlled agents in modern
computer games is determined by so-called ‘game AI’. We
define ‘adaptive game AI’ as game AI that employs unsu-
pervised online learning (i.e., during game-play). Adaptive
game AI has two main objectives, namely (1) to enhance
the agents with the ability to learn from their mistakes (self-
correction), and (2) to enhance the agents with the ability
to devise new behaviour in response to previously unconsid-
ered situations (creativity). Although recently academic re-
searchers achieved good results in their exploration of adap-
tive game AI (Demasi & Cruz 2002; Spronck, Sprinkhuizen-
Kuyper, & Postma 2004; Graepel, Herbrich, & Gold 2004),
game publishers are still reluctant to release games with
online-learning capabilities (Funge 2004). Their main fear
is that the agents learn inferior behaviour (Woodcock 2002;
Charles & Livingstone 2004). Therefore, the few games that
contain online adaptation, only do so in a severely limited
sense, in order to run as little risk as possible (Charles &
Livingstone 2004).

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Dynamic scripting (Spronck, Sprinkhuizen-Kuyper, &
Postma 2004; Spronck et al. 2006) is a reinforcement learn-
ing technique aimed at fast and reliable online adaptation of
game AI. It employs knowledge bases with rules that can be
part of game scripts. Weights attached to the rules indicate
the likelihood that a rule is selected for a script. An update
mechanism adapts the weight values to increase the effec-
tiveness of the scripts generated from the knowledge base.

Often, rules in a script are only effective when they occur
in a specific order. For instance, in a Role-Playing Game
(RPG), a fighter’s melee attacks usually are most effective
when he ‘buffs’ himself first. However, if melee attack rules
occur in the script before the buffing rules, in effect the
fighter will perform his attacks without buffing. Therefore,
for an automated learning mechanism, determining the order
of the selected rules in the script is as important as determin-
ing which rules should be in the script.

In previous work, the ordering of rules occurred ei-
ther by a manually-tuned priority mechanism (Spronck,
Sprinkhuizen-Kuyper, & Postma 2004) or by the learned
rule weights, where the rules with the highest weights were
executed first (Ponsen & Spronck 2004). Neither of these
mechanisms exhibited a satisfactory performance. There-
fore we propose to enhance dynamic scripting with an auto-
matic rule-ordering mechanism, so that an appropriate rule
ordering is learned at the same time as appropriate rule
weights.

The outline of this paper is as follows. First, we describe
dynamic scripting and related work. Then, we discuss three
mechanisms to generate automatically a successful ordering
of the rules in a script, and describe the experiments that we
performed in two simulated RPGs. Finally, we discuss the
achieved results and provide conclusions.

Dynamic Scripting
In reinforcement learning problems, an adaptive agent in-
teracts with its environment and iteratively learns a policy,
based on a scalar reward signal that it receives from the en-
vironment (Kaelbling, Littman, & Moore 1996; Sutton &
Barto 1998). Dynamic scripting (Spronck, Sprinkhuizen-
Kuyper, & Postma 2004; Spronck et al. 2006) is a rein-
forcement learning technique designed for creating adap-
tive agents for commercial computer games. It employs
on-policy value iteration to learn state-action values based

exclusively on a reward signal that is only concerned with
maximising immediate rewards. Action selection is imple-
mented with a softmax method (Sutton & Barto 1998). The
reward signal is typically designed with prior expert knowl-
edge of how to achieve a certain goal.

In commercial computer games, an opponent is an agent
(or a team of agents) which opposes the human player within
a game world. In most games, the opponent’s behaviour is
determined by scripts (Tozour 2002). A script consists of a
sequence of rules, which connect a condition to an action.
To select an action, the rules in the script are examined se-
quentially, and in a straightforward design the action of the
first rule for which the condition holds true is activated.

The default implementation of dynamic scripting is aimed
at learning scripts for opponents. The implementation is as
follows. Each opponent type is represented by a knowl-
edge base that contains a list of rules that may be inserted
in a game script. Every time a new opponent is placed in
the game, the rules that comprise the script controlling the
behaviour are extracted from the corresponding knowledge
base. Each rule in the knowledge base has a so-called ‘rule
weight’. The probability for a rule to be selected for a script
is proportional to the associated rule weight.

After an encounter (i.e., a fight) between the human player
and an opponent, the opponent’s knowledge base adapts by
changing the rule-weight values in accordance with the suc-
cess or failure rate of the rules that were activated during the
encounter (i.e., rules that occurred in the opponent’s script).
The new rule weight value is calculated as W +∆W , where
W is the original rule weight value. The weight adjustment
∆W is expressed by the following formula:

∆W =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Pmax
b− F

b
{F < b}

Rmax
F − b

1− b
{F ≥ b}

(1)

In Equation 1, Rmax and Pmax are the maximum reward and
maximum penalty respectively, b ∈ 〈0, 1〉 is the break-even
value, and F ∈ [0, 1] is the opponent’s fitness. The fitness is
a relative measure of the opponent’s success, which is high
for good results (victories) and low for bad results (defeats).

Dynamic scripting has been designed so that adaptive op-
ponents (1) start exploiting knowledge already after a few
trials, and (2) explore new knowledge continuously. It al-
lows balancing exploitation and exploration by maintaining
a minimum and maximum selection probability for all ac-
tions (i.e., rules). Comparable solution methods such as
temporal-difference learning or Monte-Carlo learning up-
date state-action values only after they have been executed
(Sutton & Barto 1998). In contrast, dynamic scripting up-
dates all state-action values in a specific state through a
redistribution process (Spronck et al. 2006), so that the
sum of the state-action values remains constant. The con-
sequence is that dynamic scripting cannot guarantee conver-
gence. Non-convergence actually is essential for successful
use in games, since the learning task continuously changes
(e.g., the human player may choose to switch tactics). Dy-
namic scripting is capable of generating a variety of behav-

iours, and responding quickly to changing game dynamics.
In its original implementation, the knowledge bases used

by dynamic scripting were manually designed, i.e., pro-
grammers used their own knowledge of the game engine
to create a list of rules which should allow the construction
of effective game scripts in a variety of circumstances. A
manually-tuned priority mechanism was used to order the
rules in a script. In later work, Ponsen & Spronck (2004)
indicated that using an offline learning mechanism to de-
sign the knowledge bases would, in general, lead to adaptive
game AI that has increased effectiveness and efficiency. In
their research, rule ordering was effectuated by the learned
rule weights: rules with higher weights occurred earlier in
the scripts than rules with lower weights (a similar mech-
anism was used by Dahlbom & Niklasson, 2006). Ponsen
& Spronck also showed that this ordering mechanism was
flawed, in the sense that certain successful combinations of
rules could not be discovered.

Below we propose that rule ordering can be learned auto-
matically, at the same time as the rule weights are learned.
We discuss three automatic-ordering mechanisms, followed
by a discussion of the experiments executed to test their per-
formance.

Rule ordering
Based on the work of Timuri (2006), we implemented three
different automatic rule-ordering mechanisms for dynamic
scripting.

The first is Weight Ordering (WO). By this mechanism,
rules are ordered according to their rule-weight values: the
rule with the highest weight will be first in the script, the rule
with the next-highest weight second, etc. This mechanism is
analogous to the ordering implementation used by Ponsen &
Spronck (2004).

The second is Relation-Weight Ordering (RWO). By this
mechanism, a relation-weights table is maintained during
the game. It indicates for each combination of two rules
whether they have a beneficial or a detrimental effect on each
other, for both possible rule orderings, including the size of
the effect. The rules are ordered in such a way that it reflects
the highest possible benefit according to the relation-weights
table. The relation-weights table will be explained in detail
below.

The third is Relation-Weight Ordering with Selection
Bonus (RWO+B). This mechanism functions similar to
RWO, but differs during the selection of rules for a script.
During selection, for each selected rule the relation-weights
table is used to find the rule with which it has the largest re-
lation weight. If the relation weight is greater than a specific
‘threshold value’, and the second rule is not yet selected, it
will receive a ‘selection bonus’ to its rule weight so that is
has a substantially increased chance to be selected too.

The Relation-Weights Table
The relation-weights table stores two values for each combi-
nation of two rules of a knowledge base, one value for each
of the two possible orderings of the two rules. The values are
an indication for the effect that the rules have on the perfor-
mance of the script, when they occur in the specified order.

Rule R1 R2 R3 ... RN

R1 - w12 w13 ... w1N

R2 w21 - w23 ... w2N

R3 w31 w32 - ... w3N

...
RN wN1 wN2 wN3 ... -

Table 1: Relations-weights table

The relation-weights table is visualised in Table 1. Ri repre-
sents rule number i. The knowledge base contains a total of
N rules. By Ri ≺ Rj we denote that Ri occurs earlier than
rule Rj in the script. Moreover, wij represents the relation
weight that indicates the effect of Ri ≺ Rj .

Usually relation weights wij and wji are not equal. Many
rules have a ‘natural’ location in the script; e.g., rules that
deal with very specific circumstances should occur earlier in
the script than more general rules. Still, it is possible that
both relation weights are positive, when both have a bene-
ficial effect regardless of where they occur in the script. In
the same vein, it is possible that both are negative, when they
always have a detrimental effect.

Updating the Table
After each fight, first the rule weights are updated, followed
by the relation-weights table. The same weight-adjustment
value ∆W as used for updating the rule weights, is used to
update the relation weights. This is effectuated through the
following update rule:

for all Ri, Rj ∈ S do
if A(Ri), Ri ≺ Rj then

wij ← wij + ∆W

where S is the generated script, and A(Ri) indicates that
rule Ri was executed at least once during the fight. The ef-
fect of the update rule is that if the outcome of a fight was
positive (i.e., the learning opponent won), ∆W is positive
and therefore the relation weights of all rule combinations in
the script will be rewarded (as long as the first rule in a com-
bination was actually used). Conversely, if the outcome of a
fight was negative (i.e., the learning opponent lost), ∆W is
negative and therefore the relation weights will be penalised.

Using the Table
The relation-weights table is used to calculate the rule or-
dering weight Om for each rule Rm that is selected for the
script, according to the following equation:

Om =
N∑

i=1,Ri∈S

wmi (2)

The rules are ordered in the script according to their or-
dering weights: the rule with the highest ordering weight
comes first in the script, followed by the second-highest, etc.
Note that usually this mechanism will automatically order
relationships spanning more than two rules effectively. The
exception is when the ordering of two rules depends on the
presence or absence of a third rule, e.g., when the preferred

ordering is Ri ≺ Rj when Rk is present in the script, but
Rj ≺ Ri when Rk is absent. In practice, however, this is a
rare occurrence.

Two Experiments
To assess empirically the performance of the proposed rule-
ordering mechanisms, we performed two experiments in
simulated RPGs, namely (1) a Wizard Battle Experiment,
and (2) a Team Battle experiment. In the experiments, a
dynamic opponent (i.e., an agent or a team of agents using
dynamic scripting) is pitched against a static opponent (i.e.,
an agent or team of agents using a static, manually-designed
tactic). One fight between the two opponents consists of a
battle that continues until one of them is defeated. For Equa-
tion 1, we use Rmax = 100, Pmax = 70, and b = 0.3. For
RWO+B, we set the threshold value to 300 and the selection
bonus to 200. The function we use to calculate the fitness is
the same as used by Spronck et al. (2006).

An experiment consists of a series of tests, which are ini-
tialised with a particular rule-ordering mechanism and a par-
ticular static tactic. We defined four different static tactics
for the first experiment, and eight for the second. A test con-
sists of a series of fights, in which the dynamic opponent
uses the rule-ordering mechanism, and the static opponent
uses the static tactic. At the start of a test, the knowledge
bases are initialised with all rule weights set to 100, and,
when appropriate, all relation weights set to zero. The test
continues for a fixed number of fights, during which the dy-
namic opponent learns to become more effective than the
static opponent.

The performance of the dynamic opponent during a test is
expressed by two measures. The first measure is the ‘turn-
ing point’, which is the number of the fight after which the
average fitness over the last ten fights is higher for the dy-
namic opponent than for the static opponent, and remains
higher for at least the next ten fights. Thus, the turning point
gives an indication for the efficiency of the learning process
(the lower the turning point, the higher the efficiency). The
second measure is the ‘number of wins’, which is the total
number of victories of the dynamic opponent in the last 100
fights of the test. Thus, the second measure gives an indi-
cation of the achieved level of effectiveness of the dynamic
opponent (the higher the number of victories, the higher the
effectiveness). Each test is repeated 50 times, and the aver-
ages for the two measures are reported.

Wizard Battle Experiment
The first experiment concerns a battle between two high-
level wizards (magic users), based on the implementation
of 15th-level wizards in the RPG Neverwinter Nights. The
knowledge base for a wizard contains 40 rules, most of
which consist of simply the casting of a specific magic spell
(a complete list is given by Timuri (2006)). A script consists
of a selection of ten of these 40 rules. Each spell can only
be cast once during a fight. For rule ordering, we employed
the three different mechanisms discussed earlier in this pa-
per (WO, RWO, and RWO+B).

For the static opponent, we devised four different tactics,
namely the following.

Best Spell Offensive Disabling Combined
TP Wins TP Wins TP Wins TP Wins

WO 138 (112) 45 (23) 125 (102) 48 (20) 39 (36) 54 (8) 82 (62) 59 (10)
RWO 148 (104) 60 (24) 140 (122) 65 (21) 42 (37) 55 (11) 87 (57) 66 (12)
RWO+B 153 (135) 68 (23) 143 (106) 70 (23) 43 (41) 63 (9) 102 (88) 71 (13)

Table 2: Results of the Wizard Battle experiment.

Figure 1: Average turning points achieved in the Wizard
Battle experiment.

1. Best Spell: The agent always casts a spell of the highest
level available. If there are multiple spells available of the
highest level, one is chosen at random.

2. Offensive: The agent uses only damaging spells. It starts
with the highest-level damaging spell, and works its way
downwards. When it runs out of spells, it uses a weapon.

3. Disabling: The agent attempts to incapacitate its oppo-
nent by using disabling spells. When it runs out of dis-
abling spells, it switches to the offensive tactic.

4. Combined: The agent chooses one of the first three tactics
at random for each fight.

The experiment comprised twelve tests, combining each
of the three rule-ordering mechanisms for the dynamic op-
ponent, with each of the four tactics for the static opponent.
Each test consisted of 500 fights, and was repeated 50 times.
The resulting averages of the turning points (TP) and the vic-
tories of the last 100 fights (Wins) are presented in Table 2
(with the standard deviation for each result between brack-
ets). They are visually represented in Figures 1 and 2. From
these results we make the following four observations.

First, we see that the efficiency (derived from the turning
points) of the weight-ordering (WO) mechanism seems to be
the best of all tests, while the relation-weights ordering with
selection bonus (RWO+B) performs worst in this respect.
However, the differences are not statistically significant.

Second, we see that the effectiveness (derived from the
number of wins) achieved by WO seems to be the worst in
all tests, while RWO+B performs best. This result is statis-
tically significant for all of the differences between WO and
RWO+B, and for some of them between RWO and RWO+B.

Third, we point out that while WO has a high efficiency,

Figure 2: Average wins achieved in the Wizard Battle exper-
iment.

the resulting effectiveness for the Best-Spell and the Offen-
sive tactics are unsatisfactory, as they are less than 50%.

Fourth, we note that all rule-ordering mechanisms achieve
a very high efficiency against the disabling tactic. The turn-
ing points are low because, on average, fights against the
disabling tactic take longer than fights against the other tac-
tics. Therefore, they generate more updates in the knowl-
edge base and in the relation-weights table per fight.

Team Battle Experiment
The second experiment concerns a battle between two low-
level teams. The goals of this experiment were (1) to deter-
mine whether the results achieved with individual opponents
would transfer to opposing teams, and (2) to compare the
effectiveness of learned rule orderings with manually-tuned
rule orderings. The teams consisted each of two wizards and
two fighters, based on the implementation of 5th-level char-
acters in the RPG Baldur’s Gate. The knowledge base for
the wizard type contains 50 rules, and for the fighter type 20
rules. (a complete list is given by Spronck (2005)). A script
consists of ten rules for a wizard, and five rules for a fighter.

We did not test WO further, because the previous exper-
iment demonstrated its inferiority decisively. So, for rule
ordering, we employed three different mechanisms, namely
the following: (1) Priority-based Ordering (PO), where rules
are ordered according to manually-tuned priority values (i.e.,
as rules were ordered in the original implementation of dy-
namic scripting), (2) the previously-discussed RWO, and (3)
the previously-discussed RWO+B. For the static opponent,
we used eight different tactics, namely the following.

1. Offensive (Off): The agents focus on damaging their op-
ponents.

Off Dis Curse Def
TP Wins TP Wins TP Wins TP Wins

PO 50 (21) 73 (13) 11 (2) 89 (12) 42 (46) 61 (13) 23 (20) 74 (14)
RWO 71 (42) 79 (14) 13 (7) 74 (15) 51 (52) 67 (13) 20 (12) 75 (13)
RWO+B 71 (39) 81 (12) 14 (9) 78 (13) 39 (34) 62 (14) 23 (17) 74 (13)

Begin RP RC CON
TP Wins TP Wins TP Wins TP Wins

PO 19 (11) 79 (11) 32 (33) 58 (11) 32 (30) 66 (12) 51 (42) 61 (14)
RWO 43 (36) 67 (14) 48 (48) 61 (15) 42 (33) 64 (13) 64 (44) 65 (12)
RWO+B 45 (44) 64 (16) 54 (62) 59 (16) 56 (49) 62 (13) 61 (42) 58 (15)

Table 3: Results of the Team Battle experiment

Figure 3: Average turning points achieved in the Team Battle
experiment.

2. Disabling (Dis): The wizard agents focus on first dis-
abling their opponents, before damaging them.

3. Cursing (Curse): The wizard agents use a mixture of
magic spells to hinder the opponents.

4. Defensive (Def): The wizard agents focus on deflecting
damage from themselves and their comrades.

5. Beginner (Begin): The wizard agents mainly use random
spells.

6. Random Party (RP): The agents choose one of the first
four tactics at random for each fight.

7. Random Character (RC): Each of the agents chooses his
own tactic from the first four tactics for each fight.

8. Consecutive (CON): The agents use the first four tactics
in sequence, switching to the next tactic only when they
lose a fight.

The experiment comprised 24 tests, combining each of the
three rule-ordering mechanisms for the dynamic team, with
each of the eight tactics for the static team. Each test con-
sisted of 250 fights, and was repeated 50 times. The result-
ing averages of the turning points (TP) and the victories of
the last 100 fights (Wins) are presented in Table 3 (with the
standard deviation for each result between brackets). They
are visually represented in Figures 3 and 4. We found that in
less than 1% of the fights no turning point was reached after
a sequence of 250 fights. In these cases, the turning point

Figure 4: Average wins achieved in the Team Battle experi-
ment.

was set to 250. The influence of this choice on the average
turning points is negligible. From the results we make the
following two observations.

First, we see that the efficiency (derived from the turning
points) of the priority-based ordering (PO) mechanism is the
best in six out of eight tests, and not significantly different
from the other results in the remaining two. The explanation
is that PO needs to update the least number of weights.

Second, we see that the effectiveness (derived from the
number of wins) achieved in most cases does not differ sig-
nificantly between the mechanisms. Only in the cases of the
Disabling tactic and the Beginner tactic, PO leads to signif-
icantly better results than the other two mechanisms. How-
ever, these two static tactics are the weakest of all, and are
very easy to defeat, even without learning, by the supplied
knowledge bases with the manually-tuned priorities. There-
fore we may conclude that when learning needs to take place
to defeat a static tactic, the two mechanisms which automat-
ically learn a rule ordering manage to generate tactics as ef-
fective as those generated with manually-tuned priorities.

Effectiveness and Efficiency
In this paper, we showed that a knowledge base with an
automatically-determined rule ordering can reach at least
the same level of effectiveness as a knowledge base with
manually-tuned priority values. Furthermore, we point out
that if two rules Ra and Rb exist, which need to be in the

order Ra ≺ Rb in one set of circumstances, and in the order
Rb ≺ Ra in another, automatic rule ordering will be able to
generate the appropriate rule ordering for each of these cir-
cumstances, while manually-tuned priority values can place
the rules in an order appropriate for only one of them.

We also showed that automatic rule ordering seems to be
slightly less efficient than manually-tuned rule ordering. We
offer the following calculations on the efficiency.

With a knowledge base that contains N rules, without a
relation-weights table N rule weights must be tuned. When
a script contains M rules, after a fight (at most) M rule
weights can be updated in the knowledge base. To update
all the rule weights U1 times, NU1

M fights are needed.
The size of the relation-weights table is N(N − 1). After

a fight, 1
2M(M−1) relation weights can be updated. To up-

date all the relation weights in the table U2 times, N(N−1)U2
1
2 M(M−1)

fights are needed.
If the number of required fights to update the relation-

weights table is less than the number of fights needed to
update the rule weights, dynamic scripting with automatic
rule ordering will, in general, need about the same number
of fights as regular dynamic scripting (since the rule weights
must be updated in both cases). If, however, the relation-
weights table needs more fights than the rule weights, the
proportion of the required updates is:

NU1
M

N(N−1)U2
1
2 M(M−1)

≈ MU1

2NU2
(3)

This proportion is linear. In the Wizard Battle experiment,
a knowledge base was used with N = 40 rules, and a script
was of size M = 10. If U1 = U2, the proportion is 1

8 . There-
fore, if the relation weights need as many updates as the
rule weights, we would expect that dynamic scripting with a
relation-weights table would need eight times as many fights
as dynamic scripting without. This was not what we found.
The explanation is that the required number of updates for
relation weights U2 can be expected to be much smaller than
U1. Basically, one correct update for a relation weight is
sufficient to determine the correct order for two rules, while
multiple updates are needed for a rule weight of a strong
rule to allow the rule to be selected with a sufficiently high
probability that the turning point can be reached.

Conclusion

From our experiments, we may conclude that automatic
rule ordering, using our relation-weights table with selection
bonus (RWO+B) approach, is a valuable enhancement for
dynamic scripting. It results in game scripts that are at least
at the same level of effectiveness as scripts generated with
manually-tuned priorities, at only a slight loss of efficiency.
Furthermore, it has the ability to adapt more successfully
to changing circumstances. Combined with the research of
Ponsen et al. (2006), we have now enhanced dynamic script-
ing with the ability to generate complete knowledge bases,
including rule ordering, fully automatically.

Acknowledgements
This research is supported by a grant from the Dutch Organ-
isation for Scientific Research (NWO grant 612.066.406).

References
Charles, D., and Livingstone, D. 2004. AI: The missing
link in game interface design. In Rauterberg, M., ed., En-
tertainment Computing – ICEC 2004, LNCS 3166, 351–
354. Berlin, Germany: Springer-Verlag.
Dahlbom, A., and Niklasson, L. 2006. Goal-directed hier-
archical dynamic scripting for RTS games. In Proceedings
of the Second Artificial Intelligence and Interactive Digital
Entertainment Conference, 21–28. Menlo Park, CA: AAAI
Press.
Demasi, P., and Cruz, A. 2002. Online coevolution for
action games. International Journal of Intelligent Games
and Simulation 2(2):80–88.
Funge, J. 2004. Artificial Intelligence for Computer
Games. Wellesley, MA: A K Peters, Ltd.
Graepel, T.; Herbrich, R.; and Gold, J. 2004. Learning to
fight. In Mehdi, Q.; Gough, N.; Natkin, S.; and Al-Dabass,
D., eds., Computer Games: Artificial Intelligence, Design
and Education (CGAIDE 2004), 193–200. Wolverhamp-
ton, UK: University of Wolverhampton.
Kaelbling, L.; Littman, M.; and Moore, A. 1996. Rein-
forcement learning: A survey. Journal of Artificial Intelli-
gence Research 4:237–285.
Ponsen, M., and Spronck, P. 2004. Improving adap-
tive game AI with evolutionary learning. In Mehdi, Q.;
Gough, N.; Natkin, S.; and Al-Dabass, D., eds., Com-
puter Games: Artificial Intelligence, Design and Education
(CGAIDE 2004), 389–396. Wolverhampton, UK: Univer-
sity of Wolverhampton.
Ponsen, M.; Muñoz-Avila, H.; Spronck, P.; and Aha, D.
2006. Automatically generating game tactics with evolu-
tionary learning. AI Magazine 27(3):75–84.
Spronck, P.; Ponsen, M.; Sprinkhuizen-Kuyper, I.; and
Postma, E. 2006. Adaptive game AI with dynamic script-
ing. Machine Learning 63(3):217–248.
Spronck, P.; Sprinkhuizen-Kuyper, I.; and Postma, E.
2004. Online adaptation of game opponent AI with dy-
namic scripting. International Journal of Intelligent Games
and Simulation 3(1):45–53.
Spronck, P. 2005. Adaptive Game AI. Ph.D. thesis, Uni-
versiteit Maastricht. Maastricht, The Netherlands: Univer-
sitaire Pers Maastricht.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.
Timuri, T. 2006. Automatic Rule Ordering for Dynamic
Scripting. M.Sc. thesis. Universiteit Maastricht.
Tozour, P. 2002. The perils of AI scripting. In Rabin, S.,
ed., AI Game Programming Wisdom, 541–547. Hingham,
MA: Charles River Media, Inc.
Woodcock, S. 2002. AI roundtable moderator’s report.
www.gameai.com/cgdc02notes.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

