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Rapid and Reliable Adaptation of
Video Game AI

Sander Bakkes, Pieter Spronck, and Jaap van den Herik

Abstract—Current approaches to adaptive game AI typically
require numerous trials to learn effective behaviour (i.e., game
adaptation is not rapid). In addition, game developers are
concerned that applying adaptive game AI may result in un-
controllable and unpredictable behaviour (i.e., game adaptation
is not reliable). These characteristics hamper the incorporation of
adaptive game AI in commercially available video games. In this
article, we discuss an alternative to these current approaches. Our
alternative approach to adaptive game AI has as its goal adapting
rapidly and reliably to game circumstances. Our approach can
be classified in the area of case-based adaptive game AI. In
the approach, domain knowledge required to adapt to game
circumstances is gathered automatically by the game AI, and is
exploited immediately (i.e., without trials and without resource-
intensive learning) to evoke effective behaviour in a controlled
manner in online play. We performed experiments that test case-
based adaptive game AI on three different maps in a commercial
RTS game. From our results we may conclude that case-based
adaptive game AI provides a strong basis for effectively adapting
game AI in video games.

Index Terms—Game AI, adaptive behaviour, rapid adaptation,
reliable adaptation, RTS games.

I. INTRODUCTION

OVER the last decades, modern video games have be-
come increasingly realistic in their visual and auditory

presentation. However, game AI has not reached a high degree
of realism yet. Game AI is typically based on non-adaptive
techniques [1], [2]. A major disadvantage of non-adaptive
game AI is that once a weakness is discovered, nothing
stops the human player from exploiting the discovery. The
disadvantage can be resolved by endowing game AI with
adaptive behaviour, i.e., the ability to learn from mistakes.
Adaptive game AI can be created by using machine-learning
techniques, such as artificial neural networks or evolutionary
algorithms.

In practice, adaptive game AI in video games is seldom
implemented because currently it requires numerous trials to
learn effective behaviour (i.e., game adaptation is not rapid). In
addition, game developers are concerned that applying adap-
tive game AI may result in uncontrollable and unpredictable
behaviour (i.e., game adaptation is not reliable). The general
goal of our research is to investigate to what extent it is
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possible to establish game AI capable of adapting rapidly and
reliably to game circumstances. To allow rapid and reliable
adaptation in games, we describe an approach to behavioural
adaptation in video games that is inspired by the human
capability to solve problems by generalising over previous
observations in a restricted problem domain. Our approach
can be classified in the area of case-based adaptive game AI.

This article extends our previous findings [3], by applying
case-based adaptive game AI on three different game maps,
and incorporating a baseline comparison in the discussion
of the experimental results. Thereby we strengthen the ex-
perimental conclusions, and demonstrate generalisability. In
addition, we discuss in more detail the design considerations,
we give a more extensive description of related work, and we
discuss both the contributions and limitations of our approach.

The outline of the article is as follows. We first discuss
related work in the field of adaptive game AI (Section II).
Subsequently, we describe our approach to create a case-
based adaptive architecture for game AI (Section III). Next,
we discuss an implementation of case-based adaptive game AI
(Section IV). Then, we report on the experiments that test case-
based adaptive game AI in an actual video game (Section V),
which is followed by a discussion of the experimental results
(Section VI). Finally, we provide conclusions and describe
future work (Section VII).

II. RELATED WORK

This section discusses related work about entertainment
and game AI (Subsection II-A), adaptive game AI (Subsec-
tion II-B), and difficulty scaling (Subsection II-C). Finally, a
summary of the section is provided (Subsection II-D).

A. Entertainment and Game AI

The purpose of a typical video game is to provide en-
tertainment [1], [4]. Naturally, the criteria of what makes
a game entertaining is dependent on who is playing the
game. The literature suggests the concept of immersion as a
general measure of entertainment [5], [6]. Immersion is the
state of consciousness where an immersant’s awareness of
physical self is diminished or lost by being surrounded in an
engrossing, often artificial environment [7]. Taylor argues that
evoking an immersed feeling by a video game is essential
for retaining a player’s interest in the game [6]. As such, an
entertaining game should at the very least not repel the feeling
of immersion from the player [8]. Aesthetical elements of a
video game such as graphical and auditory presentation are
instrumental in establishing an immersive game environment.
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Once established, the game environment needs to uphold some
form of consistency for the player to remain immersed [8].

To this end, the task for game AI is to control game
characters in such a way that behaviour exhibited by the
characters is consistent within the game environment. In a
realistic game environment, realistic character behaviour is
expected. As a result, game AI that is solely focussed on
exhibiting the most effective behaviour (e.g., in a first-person
shooter (FPS) game aiming with an accuracy of one hundred
per cent) is not necessarily regarded as realistic.

Consistency of computer-controlled characters within a
game environment is often established with tricks and cheats.
For instance, in the game HALF-LIFE, tricks were used to
create the illusion of collaborative teamwork [8], causing hu-
man players to assume intelligence where in fact none existed
[9]. While it is true that tricks and cheats may be required to
uphold consistency of the game environment, they often are
implemented only to compensate for the lack of sophistication
in game AI [10]. In practice, game AI in most complex
games is not consistent within the game environment, and
exhibits what has been called ‘artificial stupidity’ [9] rather
than artificial intelligence. To increase game consistency, we
primarily aim at creating an optimally playing game AI, as
suggested by Buro and Furtak [10]. By increasing the game
consistency, by implication the entertainment value of a video
game increases. In complex video games, such as real-time
strategy (RTS) games, near-optimal game AI is seen as the
basis for obtaining consistency of the game environment [8].
Naturally, we still consider that game AI needs to be tailored
to be appropriate for individual players. This is discussed in
Subsection II-C.

B. Adaptive Game AI
Modern video games present a complex and realistic en-

vironment in which characters controlled by game AI are
expected to behave realistically (‘human-like’). An important
feature of human-like behaviour of game AI is the ability
to adapt to changing circumstances. Game AI endowed with
this ability is called ‘adaptive game AI’, and is typically
implemented via machine-learning techniques. Adaptive game
AI may be used to improve the quality of game AI significantly
by learning effective behaviour while the game is in progress.
Adaptive game AI has been successfully applied to uncom-
plicated video games [11]–[13], and to complex video games
[14].

To deal with the complexities of video games, in recent
years researchers have adopted increasingly case-based rea-
soning (CBR) and case-based planning (CBP) approaches in
their work. For instance, Sharma et al. developed an approach
for achieving transfer learning in the MADRTS game, by using
a hybrid case-based reasoning and reinforcement learning
algorithm [15]. Aha et al. developed a retrieval mechanism
for tactical plans in the WARGUS game [16], that builds
upon domain knowledge generated by Ponsen and Spronck
[17]. Ontañón et al. established a framework for case-based
planning on the basis of annotated knowledge drawn from
expert demonstrations in the WARGUS game [18]. Auslan-
der et al. used case-based reasoning to allow reinforcement

learning to respond more quickly to changing circumstances
in the UNREAL TOURNAMENT domination game [19]. Louis
and Miles applied case-injected genetic algorithms to learn
resource allocation tasks in RTS games [20]. Baumgarten et
al. established an approach for simulating human game-play
in strategy games using a variety of AI techniques, including,
among others, case-based reasoning [21].

Generally, we observe that learning effective behaviour
while the game is in progress (i.e., ‘online’), typically requires
an inefficiently large number of learning trials. In addition, it
is not uncommon that a game has finished before any effective
behaviour could be established, or that game characters in a
game do not live sufficiently long to benefit from learning. As
a result, it is difficult for players to perceive that the game
AI is learning. This renders the benefits of online learning
in video games subjective and unclear [22]. In addition, we
observe that even with advanced approaches to game AI, it is
often difficult to establish effective behaviour in a controlled
and predictable manner. Therefore, the focus of the present
research is to create rapidly and reliably effective behaviour
of game AI.

C. Difficulty Scaling
Difficulty scaling is the automatic adaptation of the chal-

lenge a game poses to the skills of a human player [23]. When
applied to game AI, difficulty scaling aims usually at achieving
an “even game”, i.e., a game wherein the playing strength of
the computer and the human player match.

Once near-optimal game AI is established, difficulty-scaling
techniques can be applied to downgrade the playing-strength
of game AI [23] to ensure that a suitable challenge is created
for the player. Many researchers and game developers consider
game AI, in general, to be entertaining when it is difficult to
defeat [24]. Although for strong players that may be true,
novice players will not enjoy being overwhelmed by the
computer. For novice players, a game is most entertaining
when the game is challenging but beatable [25].

The only means of difficulty scaling implemented in most
games, is typically provided by a “difficulty setting”, i.e., a
discrete parameter that determines how difficult the game will
be. The purpose of a difficulty setting is to allow both novice
and experienced players to enjoy the appropriate challenge the
game offers. Usually the parameter influences the psychical
properties of the opponents, such as their strength. Very rarely
the parameter influences the opponents’ tactics. Consequently,
even on a “hard” difficulty setting, opponents exhibit inferior
behaviour, despite their high physical strength and health. In
addition, it is hard for the player to estimate reliably the
difficulty level that is appropriate for himself. Finally, discrete
difficulty settings cannot be fine-tuned to be appropriate for
each player.

In recent years, researchers have developed advanced tech-
niques for difficulty scaling of game AI. Hunicke and Chap-
man explore difficulty scaling by controlling the game envi-
ronment (i.e., the number of weapons and power-ups avail-
able to a player) [26]. Demasi and Cruz use coevolutionary
algorithms to gradually teach game characters how to be-
have [27]. Spronck et al. use weights assigned to possible
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game strategies, to determine dynamically whether predictably
strong game strategies should be executed [23]. Yannakakis
and Hallam provide a qualitative and quantitative means for
measuring player entertainment in real time [28].

D. Summary of Related Work

In summary, two desired characteristics of game AI dis-
cussed in this section are consistency and challenge. They
serve as a guideline of our approach to adaptive game AI. In
our approach, consistency of the game environment is main-
tained by adapting rapidly and reliably to game circumstances.
In addition, in our approach we consider that the challenge
that is provided by the game AI should be adaptable to fit
individual players. Our approach is discussed next.

III. ADAPTIVE ARCHITECTURE

This section discusses our approach to create an effective
adaptive architecture for game AI. First, we discuss the design
considerations of the approach (Subsection III-A). Second, we
discuss the approach, which we refer to as case-based adaptive
game AI (Subsection III-B). Third, we discuss the contribu-
tions and limitations of the approach (Subsection III-C).

A. Design Considerations

Game AI should be challenging and consistent with the
game environment in which it is situated. To this end, game
AI requires the ability to adapt to changing circumstances.
Typically, adaptive game AI is implemented for perform-
ing adaptation of the game AI in an online and computer-
controlled fashion. Improved behaviour is established by con-
tinuously making (small) adaptations in the game AI. To adapt
to circumstances in the current game, the adaptation process
normally is based only on observations of current gameplay.
This is called incremental adaptive game AI. The incremental
approach may be used to improve significantly the quality of
game AI by endowing game AI with the capability of adapting
its behaviour while the game is in progress.

A recurring characteristic of incremental adaptive game AI
is its difficulty with establishing rapid and reliable adaptation
of game AI. The reason is that the incremental approach to
adaptive game AI requires either (1) a high quality of the
domain knowledge used (which generally is unavailable to the
AI), or (2) a large number of trials to learn effective behaviour
online (which in an actual video game is highly undesirable).

Naturally, going through a large number of adaptation trials
does not coincide with our goal of adapting rapidly game AI.
As a result, one can only adapt rapidly to game circumstances,
by improving the quality of the domain knowledge that is
exploited. The same holds for our goal of reliably adapting
game AI; one can only adapt reliably to game circumstances,
when the domain knowledge incorporates accurate estimates
on the effect of a game adaptation under consideration. Do-
main knowledge of such high quality is not available to the
adaptation process of incremental adaptive game AI, which is
based only on observations of the current gameplay.

Considering the previous discussion, it is clear that incre-
mental adaptive game AI cannot be applied successfully to the

Fig. 1. Case-based adaptive game AI (see text for details).

extent that it can be used to adapt rapidly and reliably game
AI in online game playing conditions. For online adaptation
of game AI, capable of rapid and reliable adaptation of game
AI, it therefore is necessary that an alternative is established
for the incremental adaptive game AI approach. Our proposal
for an alternative approach is discussed next.

B. Case-based Adaptive Game AI

To achieve rapidly and reliably adaptive game AI, we
propose an alternative, novel approach to adapting the AI of
video games free of the hampering requirements of typical
adaptive game AI. We refer to the approach as ’case-based
adaptive game AI’. We define case-based adaptive game AI as
an approach to game AI where domain knowledge is gathered
automatically by the game AI, and is exploited immediately
(i.e., without trials and without resource-intensive learning) to
evoke effective behaviour.

This approach to adaptive game AI is expected to be
particularly successful in games that have access to the internet
to store and retrieve samples of gameplay experiences. For
instance, in the popular Massive Multiplayer Online Games
(MMOGs), observations from many games played against
many different opponents are available to the game AI. The
approach is illustrated in Figure 1. It implements a direct
feedback loop for control of characters operating in the game
environment. The behaviour of a game character is determined
by the game AI. Each game character feeds the game AI with
data on its current situation, and with the observed results
of its actions (see bottom of Figure 1). The game AI adapts
by processing the observed results, and generates actions in
response to the character’s current situation. An adaptation
mechanism is incorporated to determine how to adapt the game
AI in the best way. For instance, reinforcement learning may
be applied to assign rewards and penalties to certain behaviour
exhibited by the game AI.

In Figure 1, for rapid adaptation, we have extended the
feedback loop by (1) explicitly processing observations from
the game AI, and (2) allowing the use of attributes which
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are not directly observed by the game character (e.g., obser-
vations of team-mates). Inspired by the case-based reasoning
(CBR) paradigm, the approach collects character and game-
environment observations, and extracts from those a case
base. The case base contains all observations relevant for the
adaptive game AI, without redundancies. The observations
are time-stamped and structured in a standard format for
rapid access. To adapt rapidly to circumstances in the current
game, the adaptation process is based on domain knowledge
drawn from observations of a multitude of games. The domain
knowledge gathered in a case base is typically used to extract
models of game behaviour, but can also directly be exploited
to adapt the AI to game circumstances. In our proposal of
case-based adaptive game AI, the case base is used to extract
an evaluation function and opponent models. Subsequently, the
evaluation function and opponent models are incorporated in
an adaptation mechanism that directly exploits the gathered
cases during online play.

The approach to case-based adaptive game AI is inspired
by the human capability to reason reliably on a preferred
course of action with only a few online observations on the
problem domain. Following from the complexity of modern
video games, we propose that for effective and rapid use,
game observations should be (1) represented in such a way
that the stored cases can be reused for previously unconsidered
situations, and (2) be compactly stored in terms of the amount
of gathered feature data. As far as we know, our approach
to rapidly and reliably adapting game AI has not yet been
implemented in an actual video game.

C. Contributions and Limitations of the Approach

Game developers may consider using an alternative ap-
proach to game AI when they are convinced of its qualitative
effectiveness. The main contribution of our research therefore
is demonstrating that case-based adaptive game AI can be
applied generically in a complex video game. In this article
we will demonstrate in an RTS game that the approach can
be applied to both generate effective game strategies, and to
scale automatically the difficulty level to the player.

To this end, the approach is adjusting a pre-existing game
AI, rather than ‘being the AI’ (as most previous case-based
reasoning approaches to game AI), based on a case base drawn
from observations of a multitude of games. Particularly in
the popular multi-player games, the case base is expected to
grow rapidly. With a sufficiently large and diverse case base,
the adaptation process no longer needs to go through a large
number of adaptation trials, but instead can adapt instantly to
game circumstances. Furthermore, the game AI will become
robust in dealing with non-determinism, since the case base
can be used as a model to predict the results of game strategies.
An advantage of the approach tying in with a pre-existing
game AI is that it enables game developers to control and
predict with relative accuracy the behaviour that is exhibited
by the game AI. In addition, the case base can be utilised for
providing feedback on distinct strengths and weaknesses of a
player, and can provide inexpensive insight into the balance of
a game. Thus, it can help in testing and debugging the game.

Fig. 2. Screenshot of the SPRING game environment. In the screenshot, the
base on the top left is being attacked via a narrow cliff passage.

Naturally, the approach has certain limitations. A first
limitation is that it is not fully knowledge free, but requires
some domain knowledge to steer the adaptation process. For
instance, the features to compare the similarity of game obser-
vations need to be established. We assume that such domain
knowledge is available to the developers of the game. A second
limitation is that for effective adaptation, the case base needs
to contain cases relevant to the current circumstances. This
limitation is partially addressed by generalising over stored
cases. A third limitation is that the ability to adapt to changing
circumstances is restricted by the behavioural expressiveness
provided by the game AI that the approach ties in with.

IV. IMPLEMENTATION

This section discusses our implementation of case-based
adaptive game AI. We subsequently discuss the game envi-
ronment in which we implement case-based adaptive game AI
(Subsection IV-A), the established evaluation function (Sub-
section IV-B), and an adaptation mechanism inspired by the
case-based reasoning paradigm (Subsection IV-C). Previously
created opponent models [29] will be incorporated in future
research.

A. The SPRING Game Environment

The game environment in which we implement case-based
adaptive game AI, is the video game SPRING [30]. SPRING,
illustrated in Figure 2, is a typical and open-source RTS game,
in which a player needs to gather resources for the construction
of units and buildings. The aim of the game is to use the
constructed units and buildings to defeat an enemy army in a
real-time battle. A SPRING game is won by the player who
first destroys the opponent’s ‘Commander’ unit.

Modern RTS games typically progress through several
distinct phases as players perform research and create new
buildings that provide them with new capabilities. The phase
of a game can be straightforwardly derived from the observed
traversal through the game’s tech tree. A tech tree is a directed
graph without cycles that models the possible paths of research
a player can take within the game. Traversing parts of the
tech tree is (almost) always advantageous, yet there is a cost
for doing so in time and game resources. In SPRING, three
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levels of technology are available. At the start of the game, a
player can only construct Level 1 structures and Level 1 units.
Later in the game, after the player has performed the required
research, advanced structures and units of Level 2 and Level
3 become available.

B. Evaluation Function

To exhibit behaviour consistent within the game environ-
ment presented by modern video games, the game AI needs the
ability to assess the current situation accurately. This requires
an appropriate evaluation function. The high complexity of
modern video games makes the task to generate such an
evaluation function for game AI a difficult one.

In previous research we discussed an approach to generate
automatically an evaluation function for game AI in RTS
games [31]. The approach to generate an evaluation function
incorporated TD (Temporal Difference) learning [32] to learn
unit-type weights, which reflect the actual playing strength of
each unit type. Our evaluation function for the game’s state is
denoted by

v(p) = wpv1 + (1− wp)v2 (1)

where wp ∈ [0 . . . 1] is a free parameter to determine the
weight of each term vn of the evaluation function, and p ∈ ℕ
is a parameter that represents the current phase of the game.
Our evaluation function incorporates two evaluative terms, the
term v1 that represents the material strength and the term v2

that represents the Commander safety. The selection of the
two terms follows our expert knowledge with the game. The
terms can be distinctly weighted for each phase of the game,
to reflect their varying importance during play of the game
(e.g., material balance may be more import early in the game,
where Commander safety may be more important later in the
game).

Previous research performed in the SPRING environment has
shown that the accuracy of situation assessments is closely
related to the phase of the game in which they are made
[33]. To distinguish phases of the SPRING game, we map
tech levels to game phases and distinguish between when tech
levels are “new,” and when they are “mature,” as indicated by
the presence of units with a long construction time. This leads
us to define the following five game phases.

∙ Phase 1: Level 1 structures observed.
∙ Phase 2: Level 1 units observed that have a build time
≥ 2,500.

∙ Phase 3: Level 2 structures observed.
∙ Phase 4: Level 2 units observed that have a build time
≥ 15,000.

∙ Phase 5: Level 3 units or Level 3 structures observed.

Results of experiments to test the established evaluation
function showed that just before the game’s end, the function
is able to predict correctly the outcome of the game with
an accuracy that approaches one hundred per cent. In addi-
tion, experimental results showed that the evaluation function
predicts ultimate wins and losses accurately before half of

the game is played.1 From these results, we then concluded
that the established evaluation function effectively predicts the
outcome of a SPRING game and that the proposed approach is
suitable for generating evaluation functions for highly complex
video games, such as RTS games. Therefore, we incorporate
the established evaluation function in the implementation of
our case-based adaptive game AI.

C. Adaptation Mechanism

In our approach, domain knowledge collected in a case base
is exploited for adapting game AI. To generalise over obser-
vations with the problem domain, the adaptation mechanism
incorporates an offline means to index collected games, and
performs an offline clustering of observations. To ensure that
game AI is effective from the onset of a game, it is initialised
with a previously observed, successful game strategy. For
online strategy selection, a similarity matching is performed
that considers six experimentally determined features.

We define the game strategy as the configuration of param-
eters that determine strategic behaviour. The term ‘opponent
strategy’ is used analogous to game strategy, to reflect that it
concerns a game strategy that is employed by the opponent
player. In the game AI that we used in our experiments,
we found 27 parameters that determine the game strategy
of the game AI. The concerning parameters affect the game
AI’s behaviour on a high, strategic level, and not on a low,
tactical level. For example, the parameter AIRCRAFT RATE
determines on a high level how many aircraft units should
be constructed. How exactly the constructed aircraft units
should be employed is decided by lower-level game AI. All
27 parameters are described in the Appendix.

The adaptation mechanism is algorithmically described be-
low, and is subsequently discussed in detail.
/ / O f f l i n e p r o c e s s i n g

A1 . Game i n d e x i n g ; c a l c u l a t e i n d e x e s f o r a l l
s t o r e d games .

A2 . C l u s t e r i n g o f o b s e r v a t i o n s ; group t o g e t h e r
s i m i l a r o b s e r v a t i o n s .

/ / I n i t i a l i s a t i o n o f game AI
B1 . E s t a b l i s h t h e ( most l i k e l y ) s t r a t e g y of t h e

opponen t p l a y e r .
B2 . De te rmine t o which p a r a m e t e r−band v a l u e s

t h i s opponen t s t r a t e g y can be a b s t r a c t e d .
B3 . I n i t i a l i s e game AI wi th an e f f e c t i v e s t r a t e g y

o b s e r v e d a g a i n s t t h e opponen t w i th t h e most
s i m i l a r p a r a m e t e r−band v a l u e s .

/ / On l i ne s t r a t e g y s e l e c t i o n
C1 . Use game i n d e x e s t o s e l e c t t h e N most s i m i l a r

games .

1We should point out here that a human player would probably score one
hundred per cent on correctly predicting the outcome of a game in its final
stage. The fact that the score function does not achieve human performance is
not an indication that it is badly designed for the following two reasons. First,
the evaluation function is tuned to make predictions that are good during a
large part of the game, not only at the end, and therefore it will trade prediction
accuracy at the end of the game for higher prediction accuracy earlier in the
game. Second, if the goal of the game was to destroy all the opponent’s units,
a correct prediction would be easy to make at the end. However, the goal
is to destroy the opponent’s Commander, and we found that it sometimes
happens that a player who is behind in material strength can still win (e.g.,
when the opponent’s Commander makes a high-risk move, such as attacking
strong enemy units on its own).
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C2 . Of t h e s e l e c t e d N games , s e l e c t t h e M games
t h a t b e s t s a t i s f y t h e g o a l c r i t e r i o n .

C3 . Of t h e s e l e c t e d M games , s e l e c t t h e most
s i m i l a r o b s e r v a t i o n .

C4 . Per fo rm t h e game s t r a t e g y s t o r e d f o r t h e
s e l e c t e d o b s e r v a t i o n .

Game indexing (A1): We define a game’s index as a vector
of fitness values, containing one entry for each time step.
These fitness values represent the desirability of all observed
game states. To calculate the fitness value of an observed game
state, we use the previously established evaluation function
(shown in Equation 1). Game indexing is supportive for
later strategy selection. As it is a computationally expensive
procedure, it is performed offline.

Clustering of observations (A2): As an initial means
to cluster similar observations, we apply the standard k-
means clustering algorithm [34]. Even though this algorithm
is effective for our current setup, alternatives such as tree-
indexing structures (e.g., kd-trees [35] or cover trees [36])
may be considered when working with increasingly large
collections of cases.

The metric that expresses an observation’s position in the
cluster space is comprised of a weighted sum of the six obser-
vational features that also are applied for similarity matching.
Clustering of observations is supportive for later strategy
selection. As it is a computationally expensive procedure, it is
performed offline.

Similarity matching (A2 and C3): To compare a given ob-
servation with another observation, we define six observational
features, namely (1) phase of the game, (2) material strength,
(3) commander safety, (4) positions captured, (5) economical
strength, and (6) unit count. Similarity is defined by a weighted
sum of the absolute difference in features values. The selection
of the features, and the weights assigned to each feature is
determined by the experimenter based on experience with the
game environment. The weighted sum for both clustering of
observations and similarity matching is calculated as follows.

similarity = ((1 + diff(pℎase of tℎe game))

∗ (0.5 ∗ diff(unit count)))

+ diff(material strengtℎ)

+ diff(commander safety)

+ diff(positions captured)

+ diff(economical strengtℎ)

As observations are clustered, calculating the similarity be-
tween observations is computationally relatively inexpensive.
This is important, as similarity matching must be performed
online.

Initialisation of game AI (B1-B3): To select intelligently
the strategy initially followed by the game AI, one needs to
determine which strategy the opponent is likely to employ.
To this end, we model opponent players based on actual
game observations. In the current experiment, we construct the
opponent models on the basis of observations of the parameter
values of the opponent strategies, which indicate the strategic
preferences of particular opponents. In future work, we will
assume that parameters of the underlying opponent behaviour
cannot be observed directly, and thus opponent models will

have to be established via alternative techniques, such as
statistical learning.

Our procedure to initialise the game AI is as follows. Once
the opponent strategy has been identified, we determine in
which parameter bands [37] the opponent strategy can be
abstracted. We define three bands for each parameter, ‘low’,
‘medium’ and ‘high’. We subsequently initialise the game AI
with an effective strategy observed against the most similar
opponent. We consider a strategy effective when in previous
play it achieved a set goal criterion (thus, the game AI will
never be initialised with a predictably ineffective strategy), and
consider opponents strictly similar when the abstracted values
of the parameter bands are identical.

Online strategy selection (C1-C4): This step selects online
which strategy to employ. The procedure is as follows. Using
the game indexes, we first preselect the N games with the
smallest accumulated fitness difference with the current game,
up until the current observation. Subsequently, of the selected
N games, we perform the game strategy of the most similar
observation of the M games that satisfy a particular goal
criterion. The goal criterion can be any metric to represent
preferred behaviour. In our experiments, the goal criterion is
a desired fitness value. For instance, a desired fitness value
of 100 represents a significant victory, and a fitness value of
0 represents a situation where both players are tied, which
may be considered balanced gameplay. Naturally, we have
to consider that performing strategies associated with similar
observations may not yield the same outcome when applied to
the current state. Therefore, to estimate the effect of perform-
ing the retrieved game strategy, we measure the difference in
fitness values between the current and the selected observation,
and straightforwardly compensate the expected fitness value.
For instance, consider that after playing the game for a certain
amount of time, the fitness value of the current game is -5, and
that the fitness value of a similar game at that same time was
+5, and resulted ultimately in a fitness value of +10 when the
game had finished. In this situation, we estimate that applying
the concerning game strategy will result ultimately in a fitness
value of 0.

V. EXPERIMENTS

This section discusses experiments that test our implementa-
tion of case-based adaptive game AI. We first describe the ex-
perimental setup (Subsection V-A). Subsequently, we discuss
the performance evaluation (Subsection V-B). Next, we discuss
the results obtained with game adaptation (Subsection V-C).
Finally, we discuss the results obtained with difficulty scaling
(Subsection V-D).

A. Experimental Setup

To test our implementation we start collecting observations
of games where two game AIs are pitted against each other.
As multiple SPRING game AIs are available, we first have to
select a game AI that is suitable for our experiments. We found
one open-source game AI, which the author named ‘AAI’
[38]. AAI is under active development, and is regarded stable
and effective in general play. The game AI integrates robust
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(a) SmallDivide

(b) TheRing (c) MetalHeckv2

Fig. 3. The three maps that were used in our experiments.

resource management, and follows a moderately defensive
playing style. We enhanced this game AI with the ability to
collect game observations in a case base, and the ability to
disregard radar visibility so that perfect information on the
environment was available. As opponent player, we used the
original AAI game AI.

To determine to what extent case-based adaptive game AI
can be applied generically, we test it while operating in three
different RTS maps. To this end, for each map we collect
observations from numerous games played on the particular
map, and exploit these observations in adaptation trials. The
three concerning maps are (a) SmallDivide, (b) TheRing, and
(c) MetalHeckv2. All maps are symmetrical and have no water
areas. The map SmallDivide, illustrated in Figure 3(a), is
the default map of the SPRING game, and has one choke
point in the centre of the map. The map TheRing, illustrated
in Figure 3(b), is a map with an impassable mountain in
the centre of the map. The map MetalHeckv2, illustrated in
Figure 3(c), is a map without significant obstacles, that in
addition is abundant with metal resources.

For collecting observations, we simulate competition be-
tween different players by pseudo-randomising the strategic
parameters of both players for each game. This results in ran-

TABLE I
CONTENTS OF THE CASE BASE.

Map Games in Case Base Obs. in Case Base Data Size

SmallDivide 325 213.005 650 MB

TheRing 325 128.481 341 MB

MetalHeckv2 325 107.081 201 MB

domly generated strategic variations of predictably reasonable
behaviour (and not fully random strategic behaviour). The
collection process was as follows. During each game, game
observations were collected every 127 game cycles, which
corresponds to the update frequency of AAI. With the SPRING
game operating at 30 game cycles per second, this resulted in
game observations being collected every 4.233 seconds.

We acknowledge that the amount of offline storage should
be low for our approach to be considered practical for im-
plementation in a game-production setting. We therefore store
game observations in a lightweight fashion, by only abstracting
the position and unit-type of each unit for each game observa-
tion. This abstraction, of approximately 3 KB per observation,
provides a powerful basis for deriving observational features.
Accordingly, a case base was built from 448,567 observations
of 975 games2, resulting in a case base consisting of 1192 MB
of uncompressed observational data. Approaches are available
to keep reducing the size of the case base, such as offline data
compression and subsequent online data decompression [39],
and automatic condensation of the case base [40]. However,
incorporating these approaches lies outside the scope of the
present research.

All training games and adaptation trials are played under
identical starting conditions. An overview of the contents
of the case base is given in Table I. We observe that the
amount of gathered observations depends on the structure of
the map. For instance, due to the choke point in the centre
of the SmallDivide map, games on this map generally take a
relatively long time to finish.

For offline clustering of observations, k is set to ten per
cent of the total number of observations. Before the game
starts, the initial strategy is determined. Online, i.e., while the
game is in progress, strategy selection is performed at every
phase transition. When the case-based adaptive game AI is
set to uphold a tie, strategy selection is performed when the
difference between the desired goal fitness and the fitness value
of the currently observed game state is larger than a predefined
threshold value.

As a general setting for online strategy selection, the param-
eter N for strategy selection is set to 50, and the parameter M
is set to 5. The threshold value for adaptation in the upholding
tie scenario is set to 2. Offline processing of the case base takes
about 2 minutes, excluding clustering of observations. One-
time only clustering of observations takes about 36 minutes.

2Naturally, the effectiveness of behaviour established via a case-based
approach depends on the quality of the cases that are gathered in the case base.
For our setup, where game strategies are established from pseudo-randomised
self-play, our estimation is that for each map several hundred games must be
observed before effective behaviour can be established.
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Online strategy selection takes about 0.1 seconds. Experiments
are performed on a PC built around an Intel Core 2 Quad CPU
@ 2.40 GHz, with 2 GB of RAM.

B. Performance Evaluation

To evaluate the performance of the case-based adaptive
game AI, we determined to what extent it is capable of ef-
fectively adapting to game circumstances. We performed three
different experiments. First, we tested to what extent the case-
based adaptive game AI is capable of adapting to the original
AAI game AI, set to play in a medium playing strength.
Second, we tested to what extent the case-based adaptive game
AI is capable of adapting to previously unobserved opponents,
which is simulated by pitting the game AI against the original
AAI game AI, initialised with randomly generated strategies.
Third, as a form of difficulty scaling, we tested to what extent
the case-based adaptive game AI is capable of upholding a tie
when pitted against the original AAI game AI, also set to play
at a medium playing strength.

For each of the first two experiments, we performed a
trial where the case-based adaptive game AI was set to win
the game (i.e., obtain a positive fitness value). For the third
experiment, we set the adaptive game AI to uphold a tie (i.e.,
maintain a fitness value of 0, while never obtaining a fitness
value less than -10, or greater than 10). To measure how well
the case-based adaptive game AI is able to maintain a fitness
value of 0, the variance in fitness value is calculated. A low
variance implies that the case-based adaptive game AI has the
ability to maintain consistently a predefined fitness value. All
experimental trials were repeated 150 times.

To establish a baseline for comparing the experimental
results, all experiments on the map SmallDivide are repeated
in a configuration where the case-based adaptation mechanism
is disabled. In this configuration, the game AI no longer intel-
ligently determines the initial strategy, but instead randomly
selects the initial strategy, and performs no online adaptation
to game circumstances.

C. Results of Game Adaptation

Table II gives an overview of the baseline results of the
first and second experiments performed in the SPRING game,
obtained with disabled case-based adaptation. The first column
of each table lists against which opponent the game AI
was pitted. The second column lists how often the trial was
repeated. The third and fourth column list how often the goal
was achieved in absolute terms, and in terms of percentage,
respectively.

The baseline results reveal that by default, the original
AAI game AI is initialised at a competitive level on the
map SmallDivide, as the game AI with disabled case-based
adaptation mechanism is only able to win 39% of the time.
In contrast, on the map TheRing, the opponent is more easy
to defeat. In addition, the results reveal that in randomised
play on two of the maps, the effectiveness of the game AI
approximates fifty per cent, as may be expected.

Table III gives an overview of the results of the first and
second experiments performed in the SPRING game, obtained

TABLE II
BASELINE EFFECTIVENESS WITH DISABLED ADAPTATION MECHANISM.

SMALLDIVIDE

Opponent Trials Goal achv. Goal achv. (%)

Original AAI 150 59 39%

Random 150 71 47%

THERING

Opponent Trials Goal achv. Goal achv. (%)

Original AAI 150 90 60%

Random 150 76 51%

METALHECKV2

Opponent Trials Goal achv. Goal achv. (%)

Original AAI 150 70 47%

Random 150 54 36%

TABLE III
EFFECTIVENESS WITH ENABLED ADAPTATION MECHANISM.

SMALLDIVIDE

Opponent Trials Goal achv. Goal achv. (%)

Original AAI 150 115 77%

Random 150 96 64%

THERING

Opponent Trials Goal achv. Goal achv. (%)

Original AAI 150 122 81%

Random 150 93 62%

METALHECKV2

Opponent Trials Goal achv. Goal achv. (%)

Original AAI 150 124 83%

Random 150 60 40%

with the case-based adaptation mechanism. The experiments
concerned the adaptation ability of the case-based adaptation
mechanism. The legend of Table III is equal to that of the
table with the baseline results.

The results reveal that when pitted against the original
AAI game AI, set to play in a medium playing strength, the
case-based adaptation mechanism improves significantly on
the established baseline effectiveness on the map SmallDivide
(77%, compared to the baseline 39%). In addition, the results
reveal that when pitted against the original AAI game AI, on
each of the three maps the case-based adaptation mechanism
effectively obtains a victory (77%, 81% and 83% of the
experimental runs, respectively). These results indicate that
the case-based adaptation mechanism is generically effective
in play against the original AAI game AI. Figure 4 displays
the obtained fitness value as a function over time of two
typical experimental runs on the map SmallDivide. Figure 5
displays the obtained median fitness value over all game trials
against the original AAI opponent on the map SmallDivide,
as a function over the relative game time.

In addition, the results reveal that when pitted against the
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Fig. 4. Obtained fitness values as a function over time, when pitted against the original AAI game AI on the map SmallDivide. The figure displays a typical
experimental result of (1) adaptation mechanism set to win the game, and (2) the adaptation mechanism set to uphold a tie.

original AAI game AI, initialised with randomly generated
strategies, the case-based adaptation mechanism improves by
17% on the established baseline effectiveness on the map
SmallDivide. This improvement in effectiveness is consistent
with our findings on the map TheRing, where the case-based
adaptation mechanism improves by 11% on the baseline effec-
tiveness, compared to the baseline effectiveness. In randomised
play on the map MetalHeckv2, the effectiveness of the game
AI improves by 4%. A precise explanation for the latter,
relatively small improvement is difficult to pin down. We
surmise that considerable improvement is hampered by certain
low-level AI effects that, in randomised play on the map,
are not influenced by adapting the high-level AI parameters.
That is, while the starting positions might seem equal from
the perspective of a human player, the low-level AI might be
biased in being more effective at starting, for instance, at the
top of the map rather than at the bottom.

D. Results of Difficulty Scaling

Table IV gives an overview of the baseline results of the
third experiment, obtained with disabled case-based adapta-
tion. Table V gives an overview of the results of the third
experiment, obtained with case-based adaptive game AI. The
first column of each table lists against which opponent the
game AI was pitted. The second column lists how often
the trial was repeated. The third column lists the average
time to uphold a tie position, and, between brackets, the
accompanying standard deviation of the obtained result. The
fourth column lists the average variance in fitness value, and,
between brackets, the accompanying standard deviation of the
obtained result.

The experiment concerned the difficulty scaling ability of
the case-based adaptive game AI. The results reveal that
when pitted against the original AAI opponent, the case-
based adaptive game AI improves significantly on the time
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Fig. 5. Median fitness value over all game trials against the original AAI
opponent on the map SmallDivide, as a function over the relative game time.

in which a tie is upheld on the map SmallDivide (37.37
minutes, compared to the baseline 26.98 minutes). In addition,
the results reveal that on each of the three maps the case-
based adaptive game AI is capable of upholding a tie for a
sustained period of time (37.37 minutes, 18.42 minutes, and
18.94 minutes on average, respectively). In its attempt to get
close to the target fitness value, the case-based adaptive game
AI obtains a relatively low variance (1.93, 1.55, and 1.80 on
average, respectively). The typical result given in Figure 4,
reveals that a tie can be upheld for a sustained period of time.
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TABLE IV
BASELINE EFFECTIVENESS UPHOLDING A TIE.

SMALLDIVIDE

Opponent Trials Time to uphold tie Fitness variance

Original AAI 150 26.98 min (5.98 min) 1.70 (0.53)

Random 150 27.56 min (7.78 min) 1.80 (0.62)

TABLE V
UPHOLDING A TIE WITH CASE-BASED ADAPTIVE GAME AI.

SMALLDIVIDE

Opponent Trials Time to uphold tie Fitness variance

Original AAI 150 37.37 min (16.72 min) 1.93 (0.55)

Random 150 36.23 min (17.64 min) 1.90 (0.66)

THERING

Opponent Trials Time to uphold tie Fitness variance

Original AAI 150 18.42 min (4.16 min) 1.55 (0.40)

Random 150 21.95 min (7.27 min) 1.56 (0.44)

METALHECKV2

Opponent Trials Time to uphold tie Fitness variance

Original AAI 150 18.94 min (6.16 min) 1.80 (0.43)

Random 150 18.49 min (5.49 min) 1.89 (0.50)

However, at certain point in time, inevitably, the game AI will
no longer be able to compensate play of the opponent, and the
game will either be won or lost by the player.

Comparable difficulty scaling results are obtained when the
case-based adaptive game AI was pitted against opponents
with randomly generated strategies. The results reveal that
when pitted against opponents with randomly generated strate-
gies, the case-based adaptive game AI improves significantly
on the time in which a tie is upheld on the map SmallDivide
(36.23 minutes, compared to the baseline 27.56 minutes). In
addition, the results reveal that when pitted against opponents
with randomly generated strategies, on each of the three maps
the case-based adaptive game AI is able to uphold a tie for a
sustained period of time (36.23 minutes, 21.95 minutes, and
18.49 minutes on average, respectively). In its attempt to get
close to the target fitness value, the case-based adaptive game
AI obtains a relatively low variance (1.90, 1.56, and 1.89 on
average, respectively).

VI. DISCUSSION

In the experiments that test our implementation of case-
based adaptive game AI, we observed that the game AI was
well able to achieve a victory when pitted against the original
AAI game AI, set to play in a medium playing strength. We
noticed that the case-based adaptive game AI was able to
find in the case base a strategy that could effectively defeat
the original AAI game AI. As the original AAI game AI is
not able to adapt its behaviour, the case-based adaptive game
AI could exploit its discovery indefinitely. Note that in some
cases, the case-based adaptive game AI did not win the game,
despite it exhibiting strong behaviour. Such outliers cannot

be avoided due to the inherent randomness that is typical to
video games. For instance, in the SPRING game, the most
powerful unit is able to destroy a Commander unit with a
single shot. Should the Commander be destroyed in such a
way, the question would arise if this was due to bad luck, or
due to an effective strategy by the opponent. For game AI to
be accepted as effective players, one could argue, recalling the
previously mentioned need for consistent AI behaviour, that
game AI should not force a situation that may be regarded as
the result of lucky circumstances.

In addition, we observed that even in play with randomised
strategic parameter values, the case-based adaptation mecha-
nism is generally able to find effective strategies in the case
base, and was thereby able to improve on the randomised
performance. This is a satisfactory result. As randomised
play may be considered a simulated way to test the game
AI against previously unobserved opponents, naturally, the
question remains how the performance in randomised play can
be further enhanced. We discuss two approaches to enhance
the performance in play with randomised strategic parameter
values.

First, note that for each map our case base currently consists
of observations collected over 325 games. For randomised
play, determined by 27 pseudo-randomised behavioural pa-
rameters, it would be beneficial to collect more games in the
case base in order to increase the probability of it containing
effective game strategies. As case-based adaptive game AI can
be expected to be applied in the playtesting phase of game
development, and predictably in multi-player games, the case
base in practical applications is expected to grow rapidly to
contain a multitude of effective strategies.

Second, we observed that the final outcome of a SPRING
game is largely determined by the strategy that is adopted in
the beginning of the game. This exemplifies the importance
of initialising the game AI with effective behaviour. In order
to do so, a player needs to determine accurately the opponent
against who it will be pitted. In video-game practice, (human)
game opponents do not exhibit behaviour as random as in our
experimental setup, but will typically exhibit behaviour that
can be abstracted into a limited set of opponent models. Our
previous research has shown that even in complex RTS games
such as SPRING, accurate models of the opponent player can
be established [29]. We will therefore follow the expert opinion
that game AI should not so much be focussed on directly
exploiting current game observations, but should rather focus
on effectively applying models of the opponent in actual game
circumstances [22].

In addition, we found the case-based adaptive game AI
to be able to uphold a tie for a sustained period of time,
while maintaining a relatively low variance in the targeted
fitness value. This ability may be regarded as a straightforward
form of difficulty scaling. If a metric can be established that
represents the preferred level of challenge for the human
player, then in theory the case-based adaptive game AI would
be capable of scaling the difficulty level to the human player.
Such a capability provides an interesting challenge for future
research.
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VII. CONCLUSIONS AND FUTURE WORK

In this paper we discussed an approach to adaptive game
AI capable of adapting rapidly and reliably to game circum-
stances. Our approach can be classified in the area of case-
based adaptive game AI. In the approach, domain knowledge
required to adapt to game circumstances is gathered automat-
ically by the game AI, and is exploited immediately (i.e.,
without trials and without resource-intensive learning) to evoke
effective behaviour in a controlled manner in online play.
Results of experiments that test the approach on three different
maps in the SPRING game show that case-based adaptive
game AI can successfully obtain effective performance, and
is capable of upholding a tie for a sustained period of time.
From these results, we may conclude that the proposed case-
based adaptive game AI provides a strong basis for effectively
adapting game AI in actual video games.

For future work, we will extend the established case-based
adaptive game AI with a means to scale the difficulty level
to the human player. Subsequently, we will investigate how
our approach to rapidly and reliably adapting game AI can be
improved by incorporating opponent models.

APPENDIX

In this appendix, we describe the 27 parameters of strategic
behaviour that were used in our experiments.

∙ AIRCRAFT RATE. Determines how many air units AAI will
build (a value of 7 means that every 7th unit will be an air unit;
a value of 1 means that constructing air units is disabled).

∙ AIR DEFENCE. How often air defence units will be built.
∙ FAST UNITS RATE. Determines the amount of units that will

be selected taking their maximum speed into account (4 →
25%).

∙ HIGH RANGE UNITS RATE. Determines the amount of
units that will be selected taking weapons range into account
(4 → 25%).

∙ MAX AIR GROUP SIZE. Maximum air group size.
∙ MAX ANTI AIR GROUP SIZE. Maximum size of anti-air

groups (ground, hover or sea).
∙ MAX ASSISTANTS. Maximum number of builders assisting

construction of other units/buildings.
∙ MAX BASE SIZE. Maximum base size in sectors.
∙ MAX BUILDERS. Maximum builders used at the same time
∙ MAX BUILDERS PER TYPE. How many builders of a cer-

tain type may be built.
∙ MAX DEFENCES. Maximum number of defences AAI will

build in a sector.
∙ MAX FACTORIES PER TYPE. How many factories of a cer-

tain type may be built.
∙ MAX GROUP SIZE. Maximum group size; AAI will create

additional groups if all groups of a certain type are full.
∙ MAX METAL COST. Maximum metal cost, units that cost

more metal will not be built.
∙ MAX METAL MAKERS. Maximum number of metal makers,

set to 0 if you want to disable usage of metal makers.
∙ MAX MEX DISTANCE. Tells AAI how many sectors away

from its main base it is allowed to build metal extractors.
∙ MAX MEX DEFENCE DISTANCE. Maximum distance to

base where AAI defends metal extractors with cheap defence-
buildings.

∙ MAX SCOUTS. Maximum scouts used at the same time.
∙ MAX STAT ARTY. Maximum number of stationary artillery

(e.g., big-bertha artillery).
∙ MAX STORAGE. Maximum number of storage buildings.
∙ MIN AIR SUPPORT EFFICIENCY. Minimum efficiency of

an enemy unit to call for air support.

∙ MIN ASSISTANCE BUILDSPEED. Minimum workertime /
buildspeed of a unit to be taken into account when.

∙ MIN FACTORIES FOR DEFENCES. AAI will not start to
build stationary defences before it has built at least that number
of factories.

∙ MIN FACTORIES FOR STORAGE. AAI will not start to
build stationary defences before it has built at least that number
of storage buildings.

∙ MIN FACTORIES FOR RADAR JAMMER. AAI will not
start to build stationary defences before it has built at least that
number of radars and jammers.

∙ MIN SECTOR THREAT. The higher the value the earlier AAI
will stop to build further defences (if it has not already reached
the maximum number of defences per sector).

∙ UNIT SPEED SUBGROUPS. AAI sorts units of the same cat-
egory (e.g. ground assault units) into different groups according
to their max speed (so that slow and fast units are in different
groups to prevent the slower ones from arriving in combat much
later). This parameter indicates how many different groups will
be made.
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