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Abstract 

Artificially intelligent opponents in virtual world computer games are almost 
exclusively controlled by manually-designed scripts. With increasing game complexity, 
the scripts tend to become quite complex too. As a consequence they often contain 
“holes” that can be exploited by the human player. The research question addressed in 
this paper reads: How can machine learning be used to improve the quality of opponent 
intelligence in computer games? We study the off-line application of evolutionary 
learning to generate neural-network controlled opponents for a complex strategy game 
called PICOVERSE. The results show that the evolved opponents outperform a manually-
scripted opponent. In addition, it is shown that evolved opponents are capable of 
identifying and exploiting holes in a scripted opponent. We conclude that machine 
learning is an effective tool to improve the quality of opponent intelligence in computer 
games. 

1 Introduction 
The aim of opponents in virtual-world computer games is to provide an entertaining 
playing experience rather than to defeat the human player at all costs. The quality of the 
opponent intelligence in games such as computer role-playing games (CRPGs), first-
person shooters (FPSs) and strategy games, lies primarily in their ability to exhibit 
human-like behaviour. This implies that computer-controlled opponents should at least 
meet the following four requirements: (1) they should not cheat, (2) they should exploit 
the possibilities offered by the environment, (3) they should learn from mistakes, and (4) 
they should avoid clearly ineffective behaviour. Opponents in today’s computer games, 
however, have not yet reached this level of behaviour. The appeal of massive online 
multi-player games stems partly from the fact that computer-controlled opponents often 
exhibit what has been called “artificial stupidity” [5] rather than artificial intelligence. 

In early CRPGs and most of present-day FPSs and strategy games an opponent’s 
behaviour is usually determined by a straightforward script such as “attack the target if it 
is in range, else move towards the target in a straight line”. However, more advanced 
games contain opponents controlled by large scripts comprising hundreds of complex 
rules. As any programmer knows, complex programs are likely to contain bugs and 
unanticipated features. As a consequence, artificially intelligent opponents intended to 
pose a considerable challenge to a human player often suffer from shortcomings that are 
easily recognised and exploited. For example, in the CRPG SHADOWS OF AMN (2000; 
illustrated in figure 1) the dragons, the supposedly toughest opponents in the game, 



could be easily defeated by taking 
advantage of holes in the extensive 
scripts controlling their actions. 
Evidently, such artificial stupidity 
spoils the playing experience. 

State-of-the-art artificially 
intelligent opponents lack the ability 
to learn from experience. Therefore, 
the research question addressed in 
this paper reads: How can machine 
learning techniques be applied to 
improve the quality of opponent 
intelligence in virtual world 
computer games? Section 2 
discusses two main ways of applying 

machine learning to games. Section 3 introduces the strategy game PICOVERSE and 
outlines the duelling task for which we evolve opponent intelligence. Section 4 describes 
the environment and techniques we used for our initial experiments. The results are 
presented in section 5 and discussed in section 6. Section 7 concludes and identifies 
directions for our future research. 

2 Machine Learning for Opponent Intelligence 
We distinguish two main ways of applying machine learning to improve the quality of 
opponent intelligence in virtual world computer games: on-line training and off-line 
training.  

2.1 On-line Training 
An example of on-line application of machine learning is encountered in the popular 
FPS QUAKE. The artificial player in QUAKE III (commonly called a “bot”) uses machine 
learning techniques to adapt to its environment and to select short-term and long-term 
goals [9]. For QUAKE II, John Laird has developed a bot that predicts player actions and 
uses these predictions to set ambushes and to avoid traps [3]. Of the four requirements 
we mentioned in the introduction for opponent strategies that exhibit high entertainment 
value, these bots address the first two, namely managing to avoid cheating and using 
their environment effectively. However, they can not learn from mistakes or generate 
completely new tactics to overcome ineffective behaviour. They mainly adapt to the 
world they find themselves in, rather than to the tactics of the human player. Still, these 
bots are a first step towards the creation of human-like opponents by on-line adaptation. 

Machine learning techniques are rarely used in commercial computer games. 
Presumably, the widespread dissatisfaction of game developers with machine learning 
[10] is caused by the bold aim of creating intelligent opponents using on-line learning. 
Machine learning requires numerous experiments, generates noisy results, and is 
computationally intensive. These characteristics make machine learning rather 
unsuitable for on-line training of opponents in computer games.  

Figure 1: A dragon in SHADOWS OF AMN. 



2.2 Off-line Training 
In the off-line application of machine learning techniques the disadvantages mentioned 
for on-line learning do not pose an insurmountable problem. However, to our 
knowledge, developers of commercial games have never used machine learning for off-
line learning. In our view the two main applications of off-line learning in games are: (1) 
to enhance intelligence of opponents by training them against other (scripted) 
opponents, and (2) to protect opponents against unforeseen player tactics by detecting 
“holes” in the scripts controlling the opponents. The next three sections describe the off-
line training experiments supporting our view on the off-line application of machine 
learning in games.  

3 Duelling Spaceships 
In our experiments, we apply off-line training for optimising the performance of 
opponents in a strategy game called PICOVERSE. This section discusses the game and the 
learning task to be used in our experiments. Figure 2 shows a screenshot of the game. 
PICOVERSE is a relatively complex strategy game for the Palm (handheld) computer. Our 
intentions with the development of this game are twofold: (1) we use it to support and 
illustrate our views on the design of complex Palm games [7], and (2) in the present 
context, we use it to investigate the off-line application of machine learning to improve 
opponent intelligence.  

In PICOVERSE the player assumes the role of an owner of a small spaceship in a huge 
galaxy. Players act by trading goods between planets, going on missions and seeking 
upgrades for their spaceship. During travel, players encounter other ships and combat 
may ensue. The ships are equipped with laser guns to fight opponent ships. They are 
protected from destruction by their hulls. Modelling ship damage, the strength of the 
hull decreases when hit by laser beams. The duels in PICOVERSE are more strategically 
oriented than action oriented. While the relative attack power and hull strengths of the 
spaceships are important factors in deciding the outcome of a 
fight, even overpowered players have a good chance to escape 
unharmed if their ship is equipped with fast and flexible drives 
or specific defence measures. To enhance immersiveness of 
the game, we permit opponents, who have access to the same 
equipment as the player, to escape from a duel that they are 
bound to lose, rather than to continue fighting until being 
destroyed. This feature makes the opponent intelligence non-
trivial, despite the relatively low level of complexity of the 
game compared to state-of-the-art PC games. 

4 Off-line Learning Experiments 
In our experiments, the performance of a neural-network controlled spaceship is 
optimised using off-line training in a simplified version of PICOVERSE. For both the 
evolved and opponent ships, lasers fire automatically when their enemy is within a 
certain range and within a 180 degree arc at the front of the ship. Each laser-hit reduces 

 
Figure 2: PICOVERSE. 



the hull strength of the targeted ship by an amount determined by the quality of the 
firing laser. If a ship bumps head-on into the other ship, its speed is reduced to zero. The 
neural controllers are trained using evolutionary algorithms. The fitness is determined 
by letting the evolved spaceships combat against scripted opponents in a duelling task. 
Below, we discuss the duelling task (4.1), the neural network controlling the spaceship 
(4.2) and the evolutionary algorithm (4.3). 

4.1 The Duelling Task 
Figure 3 is an illustration of the duelling task. We refer to the scripted ship as “the 
opponent” and to the ship that is controlled by a neural network as “the evolved ship”. 
The scripted behaviour of the opponent is implemented as follows. The opponent starts 
by increasing its speed to maximum and rotating the ship’s nose towards the centre of 
the evolved ship. While the opponent ship is firing its laser, it attempts to match its 
speed to the speed of the evolved ship. If the hull strength of the opponent is lower than 
that of the evolved ship, the opponent ship attempts to flee by turning around and flying 
away at maximum speed. This simple yet effective script mimics a basic strategy often 
used in virtual world games. 

4.2 The Neural Controller 
The neural network controlling the (to be) evolved ship has ten inputs. Four inputs 
represent characteristics of the evolved ship: the laser power, the laser range, the hull 
strength, and the speed. Five inputs represent characteristics of the opponent ship: the 
location (direction and distance), current hull strength, flying direction, and speed. The 
tenth input is a random value. The network has two outputs, controlling the acceleration 
and rotation of the evolved ship. The hidden nodes in the network have a sigmoid 
activation function. The outputs of the network are scaled to ship-specific maximums.  

We studied two types of neural networks, namely feedforward and recurrent 
networks. The feedforward networks include fully-connected networks (every neuron 
may be connected to any other neuron, as long as a feedforward flow through the 
network is guaranteed) and layered networks (neurons are only connected to neurons in 
the next layer). The recurrent neural networks are layered networks in which recurrent 
connections are only allowed between nodes within a layer. Recurrent connections 

Figure 3: Sequence illustrating the duelling task. The duelling spaceships are represented by the small circles.
A ship’s direction is indicated by a line inside the circle, its speed by the length of the line extending from the
ship’s nose. The dotted arc indicates the laser range. The evolved ship is fixed to the centre of the screen and
directed to the right. In the sequence the evolved ship is stationary. From left to right, the five pictures show
the following events. (1) Starting position. (2) The opponent moves towards the player. (3) The opponent
bumps into the other ship. Both ships are firing their lasers. (4) The opponent has decided it should flee and
turns around. (5) The opponent flies away and escapes. 



function as a memory by propagating activation values from the previous cycle to the 
target neuron.  

4.3 The Evolutionary Algorithm 
An evolutionary system, implemented in the ELEGANCE simulation environment [6], 
was used to determine the neural network connection weights and architecture. All 
simulations are based on the following settings: a population size of 200, an evolution 
run of 50 generations, real-valued weight encoding, size-2 tournament selection, elitism, 
Thierens’ method of dealing with competing conventions [8] and size-3 crowding. As 
genetic operators we used biased weight mutation [4], nodes crossover [4], node 
existence mutation [6], connectivity mutation [6], and uniform crossover. In addition, 
we added randomly generated new individuals to prevent premature convergence. 

The fitness is defined as the average result of fifty duels between the evolved ship 
and its opponent. Each duel lasts fifty time steps. Each duel in which the ships started 
with different characteristics was followed by a duel in which the characteristics were 
reversed. At time step t the fitness is defined as: 
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where PHt is the hull strength of the evolved ship at time t and OHt is the opponent hull 
strength at time t. The overall fitness for a duel is determined as the average of the 
fitness values at each time step.  

Determining the fitness in this way has the following properties. If the evolved ship 
and opponent both remain passive the fitness equals 0.5. If the opponent is damaged 
relatively more than the evolved ship, the fitness is larger than 0.5 and if the reverse is 
true (or when the evolved ship is destroyed) the fitness is smaller than 0.5. Therefore, 
the fitness function favours attacking if it leads to victory and favours fleeing otherwise. 

5 Results 
Table 1 presents the results of the two types of networks tested in the experiments. 
Evidently, the two-layer feedforward neural networks outperform all other networks in 
terms of average and maximum fitness values. The network with five nodes in each 
hidden layer scored only slightly better than the network with ten nodes in each layer.  

At first glance the best fitness results achieved are not very impressive. A fitness of 
0.5 means that the neural controller results are as effective as the manually-designed 
algorithm. A fitness of 0.579 (the best result obtained in the experiments) may be taken 
to indicate that the evolved opponent scores only slightly better than the scripted 
opponent. Since the scripted opponent employs a fairly straightforward tactic, one would 
expect the neural controller to be able to learn a more successful tactic. However, a 
controller that remains passive reaches a fitness of 0.362. Given that a scripted opponent 
performs at least better than a stationary ship, a fitness of 0.638 is a theoretical upper 
bound to the maximum the neural controller can reach. From that point of view, a fitness 
of 0.579 is not bad at all. 



From the perspective of playing experience, the fitness rating as calculated in our 
experiments is not as important as the objective result of a fight. A fight can end in 
victory, defeat, or a “draw”. For the best controller, we found that 42% of the encounters 
ended in victory for the evolved ship, 28% in defeat, and 30% in a draw. This means 
that 72% of the encounters ended in a situation not disadvantageous to the evolved ship, 
which achieved 50% more victories than the opponent ship. Clearly, the evolved ship 
performs considerably better than the opponent ship. 

6 Discussion 
Our results show that machine learning (i.e., off-line training) can be used to create 
intelligent opponents that outperform scripted ones. Analysing the behaviour of the best-
performing spaceship, we observed that it showed appropriate following behaviour 
when it overpowered the opponent but did not try to flee when it was losing a fight. The 
probable reason is that for a spaceship to flee, it must turn its back toward the enemy, 
thereby becoming a target that does not have the ability to fight back (since lasers only 
fire from the front of the ship). As a result, usually the fleeing ship was destroyed before 
it could escape. Attempting an escape in these encounters seems therefore of little use. 
From this observation we learned that if we want to enable escape behaviour, a better 
balance between the power of the weapons and the versatility of the ships is required. 

6.1 Improving the Scripted Opponent 
A surprising form of behaviour was observed when the opponent ship starts behind the 
evolved ship, as illustrated in figure 4. In that case, often the evolved ship attempts to 

increase the distance between the two ships, up until the moment 
a draw will occur if it continues increasing the distance. At that 
point, the evolved ship turns around and either repeats this 
behaviour a second time or attacks. Figure 5 illustrates the 
sequence of events. An explanation for the success of the 
observed behaviour is that if the distance between the two ships is 
maximal, the evolved ship will have a maximal amount of time to 
turn around and face the opponent before it gets within the 
opponent’s laser range. Since facing the opponent is required to 
counter-attack, this behaviour is beneficial to the evolved ship’s 

Figure 4: Opponent is
behind the evolved ship. 

Neural network type Exps Average Lowest Highest 
Recurrent, 1 layer, 5 hidden nodes 5 0.516 0.459 0.532 
Recurrent, 1 layer, 10 hidden nodes 5 0.523 0.497 0.541 
Recurrent, 2 layers, 5 nodes per layer 7 0.504 0.482 0.531 
Feedforward, 7 hidden nodes 5 0.472 0.382 0.527 
Feedforward, 2 layers, 5 nodes per layer 5 0.541 0.523 0.579 
Feedforward, 2 layers, 10 nodes per layer 8 0.537 0.498 0.576 
Feedforward, 3 layers, 5 nodes per layer 7 0.515 0.446 0.574 

Table 1: Experimental results. From left to right, the columns indicate the type of neural network tested, the
number of experiments performed with the neural network, the average fitness, the lowest fitness value and
the highest fitness value. The best results are typed in boldface. 



strategy. Therefore, improving the 
script of the opponent accordingly 
improves its quality considerably.  

By using off-line training, we 
also detected shortcomings in the 
scripted opponent. Although we did 
not specifically design our 
experiments for this purpose, by 
observing the behaviour of the two 
duelling ships, we found a 
significant hole in the script 
controlling the opponent. The 
opponent bases its decision to 
(attempt to) escape on a comparison 
between the relative hull strengths. 
However, it does not take into 
account the important fact that it is 
its own turn to act. If on the initial 
approach the opponent ship gets within the range of the lasers of the evolved ship before 
it can shoot its own laser, it will be damaged while the evolved ship is still undamaged. 
Regardless of its own power, this will cause the opponent’s initial reaction to be an 
attempt to escape. We found the evolved ship to exploit this weakness of the opponent. 
Repairing this hole in the opponent’s script will be a major improvement to its 
behaviour. 

6.2 Generalisation to Other Games 
We have shown how machine learning can be used to improve opponent intelligence in 
PICOVERSE. Of course, it remains an open question whether our findings generalise to 
the far more complex commercial PC games. Even the detection of holes in scripted AI, 
which is obviously much simpler than developing a whole new tactic, may prove too 
difficult if the number of choices at each turn and the number of turns in an encounter 
are very large. However, we expect for most games that encounters do not last “too 
long” (to avoid boredom) and the number of choices is not “too large” (to avoid 
confusion). Even for most commercial PC games it should therefore usually be possible 
to detect AI shortcomings by machine learning, allowing the designers to increase the 
entertainment value of the game by solving these issues before the game is released. 

Employing machine learning to design completely new tactics, however, is probably 
severely limited in its uses. John Laird warns that while neural networks and 
evolutionary systems may be applied to tune parameters, they are “grossly inadequate 
when it comes to creating synthetic characters with complex behaviours automatically 
from scratch” [2]. For a relatively simple game as PICOVERSE machine learning 
techniques by themselves can be useful in designing strong tactics. The combination of 
machine learning with more structured techniques, such as a subsumption architecture 
[1] or a technique inspired by Laird’s Soar Quakebot [3], is likely to lead to more 
reliable good results within a shorter time, and may therefore also be suitable for more 
complex environments. 

Figure 5: The right panel displays a trace of the movements 
of the evolved ship up to the moment that it fires its first 
shot. The opponent is overpowered and tries to flee, but the 
learning ship follows, as shown in the left panel. In this 
case the opponent is not able to escape. 



7 Conclusions and Future Work 
By applying off-line learning in the computer strategy game PICOVERSE we were able to 
improve opponent intelligence and to detect shortcomings in the scripted opponent. We 
conclude that the off-line application of machine learning improves the quality of 
opponent intelligence in virtual world computer games. We expect the automatic 
detection of holes in commercial computer-game scripts to become feasible by using 
learning techniques. 

Our future research will build upon our results with PICOVERSE. For creating new 
opponent tactics, we intend to explore other machine learning techniques in combination 
with, for instance, subsumption architectures. In the long run, we hope to apply our 
techniques to improve opponent intelligence in commercial computer games. 
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