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Abstract: For patients with mental health problems, various treatments exist. Before a treatment is assigned to a patient, a team of
clinicians must decide which of the available treatments has the best chance of succeeding. This is a difficult decision to make, as the
effectiveness of a treatment might depend on various factors, such as the patient’s diagnosis, background and social environment. Which
factors are the predictors for successful treatment is mostly unknown. In this article, we present a case-based reasoning approach for
predicting the effect of treatments for patients with anxiety disorders. We investigated which techniques are suitable for implementing such
a system to achieve a high level of accuracy. For our evaluation, we used data from a professional mental healthcare centre. Our application
correctly predicted the success factor of 65% of the cases, which is significantly higher than the prediction of the baseline of 55%. Under the
condition that the prediction was based on only cases with a similarity of at least 0.62, the success rate of 80% of the cases was predicted
correctly. These results warrant further development of the system.
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1. Introduction

For mental health patients with anxiety disorders, a variety of
possible treatments is available. The decision, of which
treatment a patient is offered, is mainly the responsibility of
healthcare professionals. For the patient’s health, and for
cost-effectiveness, that the treatment that is offered should be
effective in dealing with the patient’s problems. However, not
every treatment is equally effective for every patient.Moreover,
there is no consistent empirical evidence for patient-treatment
matching rules (Spinhoven et al., 2008). The effectiveness of
most treatments for a specific patient cannot be predicted by
a therapist. Despite such predictions being hard to make, they
are the first step in successfullymatching patient and treatment.
In this study, we aim to use case-based reasoning (CBR) to
make such predictions with a high level of accuracy.

This study was performed at the Community Mental
Health CentreMaastricht1 (CMHCM), theNetherlands. This
centre treats patients with all sorts of mental disorders. As a
starting point, the study focuses on patients with anxiety
disorders and the effect of cognitive behavioural therapy. To
make treatment predictions, a CBR system called CBRth
was built, where CBR stands for case-based reasoning and th
for therapy. The goal of this study is twofold: (1) to investigate
which techniques are suitable for implementing CBRth and
(2) to investigate the accuracy of CBRth.

This study is the first step in a research project in which
the ultimate goal is the creation of an advisory system for
a team of experts to assign the most effective therapy from
the therapies offered by the centre to a patient. We chose CBR,
because it is ideally suited for dealing with real-world-examples.
Moreover, patient information often contains missing values,
and as opposed to many competing methods, CBR offers
various ways to deal with those, making it a suitable approach
to our problem domain. Finally, because predictions made by
a CBR can bemade transparent to the users, they tend to have
a high level of acceptability. We discussed the proposed
system with our intended users, and found that they were
positive about the concept.

This paper is organised as follows: Section 2 provides
background information on the context of the clinical
setting, and reviews CBR in mental health care and related
techniques we used in this study. Section 3 specifies the
CBRth casebase. Section 4 describes the CBRth process.
Section 5 discusses the experimental setup. Section 6 gives
the results of this study, which are discussed in Section 7.
Section 8 presents our concluding remarks.

2. Background

This section provides background information on the
context of the clinical setting where the research was carried
out (Section 2.1). It also discusses background literature on
CBR (Section 2.2) and CBR techniques (Section 2.3).

1Dutch name for Community Mental Health Centre Maastricht is Riagg
Maastricht.
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2.1. The context

The CMHCM is mainly concerned with providing
treatments for mental health patients. It is also involved
with research, for which it cooperates with Maastricht
University. An important research domain is the effect of
treatments. Over the years, the university gathered a large
dataset on the effects of treatments given at CMHCM.

When new patients arrive at CMHCM, they are assigned
to treatment after a screening procedure by an intake staff.
This process involves the following people: (1) the patient,
(2) the screener (the therapist who determines the patient’s
diagnoses), (3) the intake staff (team of screeners) and (4)
the therapist who provides the treatment. The procedure is
as follows:

1. The patient is screened in two or three sessions to
determine the patient’s diagnoses. During the screening,
the screener does an anamnestic interview and formulates
the targets of treatment together with the patient.

2. The screener presents the case in a meeting of the intake
staff, after which the case is discussed and a decision is
taken on which treatment, if any, is offered to the patient.

3. In a next session, the screener explains the treatment to
the patient.

4. Before the treatment starts, there is a pre-assessment.
The patient completes three questionnaires. The
questionnaire scores represent the baseline state of the
patient. Patients give informed consent for the use of
these data for scientific research.

5. The patient receives treatment for several months
(usually 4–6).

6. After the treatment, a post-assessment is carried out with
the same questionnaires to determine which state the
patient is in after treatment. By comparing the two
assessments, the effect of the treatment can be
determined.

To describe the patient’s diagnoses, the screener uses the
Diagnostic and Statistical Manual of mental disorders
(DSM; (American Psychiatric Association, 1994)), a
classification of mental disorders. The DSM consists of five
axes (domains) on which disorders and other relevant issues
can be assessed. Axis I contains all mental disorders except
Personality Disorders and Mental Retardation, which form
Axis II. The Structured Clinical Interview for DSM-IV Axis
I Disorders (SCID-I; First et al., 1997) is a semi-structured
clinical interview to determine the patient’s Axis I diagnoses
based on DSM. The screener uses the SCID-I during the
screening (step 1 in the procedure). The present study
focuses on patients with a primary diagnosis (i.e. the most
serious disorder) on Axis I.

The diagnoses on Axis I are divided into clusters. Each
diagnosis belongs to one cluster. An example of a diagnosis
is Social Phobia (coded 300.23) in the cluster Anxiety
Disorders. Another example is Primary Insomnia (coded
307.42) in the cluster Sleep Disorders. The result of the

screening with the SCID-I is a list of zero or more diagnoses
on Axis I. If there are no diagnoses, there is no need for the
available kind of treatment. If there are one or more
diagnoses, the screener indicates the order of seriousness.
The primary diagnosis is the target of treatment.

To determine the effect of treatment, there is a pre-
assessment (step 4 in the procedure) and post-assessment
(step 6 in the procedure) in which the patient completes
three questionnaires. The questionnaires that are used in
the assessments are as follows:

1. Symptom Checklist-90 (SCL-90) (Arrindell & Ettema,
1986) – a series of 90 physical and psychological
complaints, which the patient rates for the degree of
distress associated with these complaints on a 5-point
Likert scale. The sum score on all 90 items can be used
as a global measure for the severity of Axis I
psychopathology. The 90 items can be divided into nine
groups of items, which belong to a specific complaint.
There is no overlap between the items of a group. The
sum score of these items forms the subscales. The
subscales of the Dutch SCL-90 are agoraphobia,
anxiety, depression, somatic complaints, inadequacy of
thought and action, mistrust and interpersonal
sensitivity, hostility, sleeping problems and ‘other.’

2. Fear Questionnaire (Marks & Mathews, 1979; Zuuren,
1988) – a 32-item self-report measure. Each item is
rated on a 9-point scale. The 32 items can by divided
into eight groups of items, each group forming so-
called the subscales. There is no overlap between
the items of a subscale. The first four subscales
refer to avoidance (Dutch abbreviation within the
questionnaire: FQV) regarding the main phobia, social
phobia, blood injury and agoraphobia. The last four
subscales refer to anxiety (Dutch abbreviation within
the questionnaire: FQA) regarding the main phobia,
social phobia, blood injury and agoraphobia. The main
phobia is formulated for each patient separately as the
situation that the patient is most afraid of and requests
treatment for.

3. Biographical characteristics – a list of questions
concerning the patient’s age, gender, religion, marital
status, education level, use of medication, earlier
treatment and duration of the complaint.

2.2. CBR in health care

Case-based reasoning is a technique for problem-solving
that is based on the decision-making process of humans by
learning from experiences (Kolodner, 1992; Aamodt &
Plaza, 1994). The technique finds a solution for a problem
by reusing the solutions of similar problems in the past.
CBR can be used in domains where the knowledge is
incomplete and complex. It has two major advantages: (1)
real-world examples can be used as a knowledge base
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(CBR does not require an explicit domain model), and (2)
CBR can explain why it provides a solution by presenting
similar cases of the past.

CBR is a popular AI-technique in the medical domain.
CBR applications were built to enhance the work of
health experts and to improve the efficiency and quality
of health care (Holt et al., 2006). Two of the earliest
medical CBR systems for diagnosis and decision support
were CASEY for heart failure (Koton, 1989) and
MEDIC for dyspnoea (Holt et al., 2006). More recent
work in this area are systems for early detection of breast
cancer (Hung & Chen, 2006), for diagnosing
neuromuscular diseases (Pandey & Mishra, 2009a),
diagnosing breast cytology (Ahn & Kim, 2009) and the
system T-CARE, a temporal case retrieval system for
medical scenarios used in an intensive care burn unit
(Juarez et al., 2011). CBR applications in health care
are mostly used for determining diagnoses and as a
medium for treatment (Pandey & Mishra, 2009b). In
the mental health care, there are only a few CBR
applications in use. The most famous system is SHRINK
(Kolodner, 1983). It is one of the first CBR systems in
the clinical field. SHRINK is also designed for
determining the patient’s diagnosis. More recent work
in the area of mental health care is a CBR system for
the diagnosis of attention-deficit hyperactivity disorder
(ADHD) (Brien et al., 2005).

Although CBR has not been used for predicting the effect
of mental health treatment, CBR is successfully used for
prediction in other areas. Some examples are predicting
the success of an in vitro fertilisation treatment (Jurisica
et al., 1998), predicting the ecological risks of pesticides in
freshwater ecosystems (Brink et al., 2002) and predicting
financial distress (Sun & Hui, 2006).

2.3. Techniques

Case-based reasoning is a methodology, which employs
different techniques. The choice of which techniques are
used in a CBR system depends on the contents and purpose
of the system. In this section, CBR details and the
techniques used for CBRth are discussed.

2.3.1. CBR cycle CBR seeks solutions to new problems by
referencing a casebase with past experiences. The casebase
forms the core of any CBR system. The CBR process is a
cycle containing four steps (Aamodt & Plaza, 1994). The
four steps are as follows:

1. RETRIEVE, which matches a new problem with the
casebase and finds one or more similar cases;

2. REUSE, which uses the solutions for the similar cases
found in the RETRIEVE step to suggest a solution for
the new problem;

3. REVISE, which investigates whether the solution
suggested by the REUSE step actually solves the
problem after it is tried out; and

4. RETAIN, which stores the new problem and its solution
in the casebase.

2.3.2. Forecasting-by-analogy If the solutions provided by
a CBR system can be assigned to different classes, CBRmay
be used as a classifier system to predict to which class a
target case belongs. This classification is called forecasting-
by-analogy and contains three steps (Jo & Han, 1996; Li
et al., 2009):

1. identifying significant features to describe the target
case;

2. searching for similar cases in the casebase; and
3. predicting the class of the target case based on the classes

of the similar cases.

Compared to the CBR cycle, the first step concerns the
case representation according to the structure of the
casebase, the second step corresponds to RETRIEVE and
the third step corresponds to REUSE. To complete the
CBR cycle, the two steps REVISE and RETAIN can be
added.

2.3.3. Nearest neighbour method For the search for
similar cases (RETRIEVE), the nearest neighbour (NN)
method is the most commonly used technique in CBR
systems. NN is an exhaustive search method that
evaluates the dissimilarity (or similarity) between all the
past cases and the new case (Tsai et al., 2005). There are
several variants of the formula that is used in NN. The
variant we used is shown as Formula 1 (Watson, 1999),
where T is the target case, S is a case in the casebase
and wi is the weight of the ith feature. The expression
ƒi(ti, si) defines the similarity function for the similarity
between T and S on the ith feature. Usually, the
Euclidean distance is used for this equation, but different
comparisons are possible.

Similarity T; Sð Þ ¼ ∑
n

i¼1
f i ti; sið Þ�wi

� �
= ∑

n

i¼1
wi

� �
(1)

The result of NN is one or more cases from the casebase,
which are deemed ‘most similar’. The two main variants of
NN are K-nearest neighbour (KNN) and R-nearest
neighbour (RNN). The result of KNN is a fixed number
(K) of cases that have the minimum dissimilarity (or
maximum similarity) with the new case. The result of
RNN is a variable number of cases, namely, all cases that
have a dissimilarity with the new case that is less than a
threshold R (Tsai & Chiu, 2007).

2.3.4. Information gain In the NN method, weights are
assigned to features. The information gain could be used
as a value for feature weights. Information gain is term used
in the information theory introduced by Shannon (1948).
Quinlan (1986, 1989) used the gain in the ID3 and C4.5
methods to create decision trees. During the creation of
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the decision tree, at each node of the tree, the information
gain is calculated for every feature. The feature with the
largest information gain is chosen as a node in the tree at
that position in the tree. The information gain is a value that
is easy to calculate, and the calculation is also easy to
automate. Only little research was carried out in which the
information gain is used as a feature weight. Daelemans
et al. (1993), Ling et al. (1997) and Wettschereck and
Dietterich (1995) used it in an instance based learning
algorithm.

The information gain (IG) can be defined as

IG ¼ E before partitioningð Þ- E after partitioningð Þ (2)

In this formula, E stands for Shannon Entropy. Entropy
within the information theory is a measure to represent the
uncertainty of a message as an information source
(Munakata, 1998). Shannon Entropy E of variable X(ω)
with a probability distribution P(X(ω)=x) is defined by
(Munakata, 1998) as

E ¼ �∑
all x

P X ωð Þ ¼ xð Þ � log2P X ωð Þ ¼ xð Þ (3)

2.3.5. Weighted voting Sun and Hui (2006) described how
the method weighted voting can be used by CBR in
combination with KNN as a classifier. The result of KNN is
a list of k cases that are most similar to the target case. The
similarity of the ith of these k cases and the target cases is
denoted as simi. The outcome class of an ith case is denoted
as di. Every ith case belongs to an outcome class Cl (with
l=1, 2, …, q in which q is the amount of possible outcome
classes) when Cl=di. For every possible outcome, we can
calculate the similarity weighted voting probability prob(Cl),
which indicates the probability that the target case belongs to
class Cl, with Formula 2 based on Sun and Hui (2006):

prob Clð Þ ¼
∑
k

i¼1
sim�

i

∑
k

i¼1
simi

(4)

with sim�
i ¼

simi if di ¼ Cl

0 otherwise

�

We can use this weighted voting technique to make a
prediction (classification) for the new case by choosing the
class that has the highest similarity voting probability.

3. CBRth casebase

The CMHCM database allows to assess the effect of
treatment by comparing pre and post-assessments. A large
dataset has been collected, which is the basis for the casebase
of CBRth. In this section, the structure of the casebase is
discussed. We describe the case features (Section 3.1), the

outcome measure (Section 3.2), the selection of cases
(Section 3.3) and the case format (Section 3.4).

3.1. Features

The basic principle of this study is to use all the features that
are shared by all the cases. The data we used were collected
during the pre-test. From these data, we extracted 30
different features. The features are named in the first column
of Table 1. Section 2.1 discusses the meaning of each of
these features. Because not every feature is equally
important, we assigned a weight to each feature according
to its importance. The different weights have a value in the
range from 0 to 1. Determining the values of these weights
is part of the study and is discussed in Section 4.3.

In this study, we used nominal (numerical values with no
order in rank) and ordinal (a finite number of numerical
values with an order in rank). In the second column of
Table 1, the type of each feature is specified. The ordinal
features have ranges of values. In the third column of
Table 1, the range of each feature is specified. We refer to
the values of these nominal and ordinal features as scores,
which refer to the questionnaire scores.

Because some ranges of scores are quite large, we discretised
the values into a smaller number of categories. For each score
values, we assigned a category (also for the nominal types
and ordinal types). In this way, every feature has a score value
and a category value. We assigned categories as follows:

1. For the nominal types and the ordinal types with a small
range, the category value is the same value as the score
value.

2. For the features of the SCL-90, we used the classification
of the norm table that is provided for the Dutch version
(Arrindell & Ettema, 1986). They divided the scores of
the features into a 7-point scale according to the following
categories: very low, low, below average, average, above
average, high and very high.

3. For the remaining features, we used the equal-frequency
binning method (Witten & Frank, 2000; Liu et al.,
2002), an unsupervised method that divides a range into
intervals with a predetermined number of cases per
interval. To increase the liability of the equal-frequency
binning, we used not only the cases that were included in
the casebase (Section 3.3) but also cases of patients that
received different treatments (1091 cases instead of 219).

In the fourth column of Table 1, the method for
discretisation of the corresponding feature is indicated, with
the arity (the number of categories after discretisation) listed
in the fifth column.

3.2. Outcome measure

With CBRth, we want to predict whether a treatment will be
successful or not. Therefore, there are two classes for the
outcome measure: successful or not successful. To determine
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which of these classes a case belongs to, we used the
c-criterion (Jacobson & Truax, 1991). The c-criterion is a
cut-off point for clinically significant change. At the time
of the post-assessment, a value is measured for the severity
of the patient’s disorder. In order for the patient to be
classified as free from the disorder, this value should lie
beneath the c-criterion.

Formula 5 (Jacobson & Truax, 1991) for the c-criterion is

c ¼ s0M1 þ s1M0

s0 þ s1
(5)

with M0 and s0 the mean and standard deviation of a well-
functioning normal population, and M1 and s1 the mean
and standard deviation of a clinical population.

The total sum score (SCL-total) on the SCL-90 is a global
measure for the severity of Axis I psychopathology. We use
the SCL-total as outcome attribute and calculated the
c-criterion for this attribute. Arrindell and Ettema (1986)
report the results of the SCL-90 for a large group of a
well-functioning normal population (referred to as 0 in
Formula 5) and the result of the SCL-90 for a large group
of patients (referred to as 1 in Formula 5). These results
were officially used for compiling the norms for the SCL-
90. We used these results to calculate the value of c. Because
Arrindell and Ettema (1986) make a distinction between the

male-population and the female-population, we have
different values for c for men (141.4) and women (159.1).

We used the value of c as follows. If for a patient the
SCL-total of the post-assessment was lower than the c, the
treatment was deemed successful, otherwise not successful.
For example, if the SCL-total of the post-assessment of a
woman was 150, then treatment was deemed successful
because 150< 159.1.

In this study, we used the c-criterion (as described
previously) for the definition of success. This method
focuses on the end state functioning of the patient (i.e. the
recovery) after treatment. Other definitions of success are
possible, for example, the Reliable Change Index (Jacobson
& Truax, 1991), which focuses on the change of the patient
between the state before treatment and after treatment.

3.3. Cases

The cases we used in the casebase are the real-world
examples of the large dataset of pre and post-assessments.
The selection of cases were based on the following
principles:

• Only cases in which the treatment was cognitive
behavioural therapy were included.

• Only cases that completed the treatment were included.

Table 1: Features used in case-based reasoning therapy

Feature Type Range Discretisation Arity Gain ai

SCL_agoraphobia Ordinal 7–35 Norm SCL-90 7 0.027 0.241
SCL_anxiety Ordinal 10–50 Norm SCL-90 7 0.041 0.171
SCL_depression Ordinal 16–80 Norm SCL-90 7 0.084 0.108
SCL_somatic_complaints Ordinal 12–60 Norm SCL-90 7 0.089 0.143
SCL_inadequacy Ordinal 9–45 Norm SCL-90 7 0.071 0.189
SCL_sensitivity Ordinal 18–90 Norm SCL-90 7 0.024 0.096
SCL_hostility Ordinal 6–30 Norm SCL-90 7 0.042 0.280
SCL_sleeping_problems Ordinal 3–15 Norm SCL-90 7 0.069 0.538
FQA_main Ordinal 0–8 None 0.010 1.000
FQA_agoraphobia Ordinal 0–40 Equal freq. 5 0.015 0.122
FQA_blood_injury Ordinal 0–40 Equal freq. 5 0.043 0.122
FQA_social_fear Ordinal 0–40 Equal freq. 5 0.027 0.122
FQV_main Ordinal 0–8 None 0.015 1.000
FQV_agoraphobia Ordinal 0–40 Equal freq. 5 0.040 0.122
FQV_blood_injury Ordinal 0–40 Equal freq. 5 0.010 0.122
FQV_social_fear Ordinal 0–40 Equal freq. 5 0.023 0.122
Gender Nominal 1–2 None 0.003 1.000
Marital_status Nominal 1–8 None 0.002 1.000
Religion Nominal 1–5 None 0.017 1.000
Education_level Ordinal 1–11 None 0.013 1.000
Age Ordinal 16–72 Equal freq. 5 0.012 0.088
Medication Nominal 0–1 None 0.000 * 1.000
Earlier_treatment Nominal 0–1 None 0.008 1.000
Duration_complaint Ordinal 0–600 Equal freq. 5 0.011 0.008
Cluster Nominal 1–15 None 0.022 1.000
Diagnose Nominal 1–36 None 0.115 1.000
Medication_category1 Nominal 0–1 None 0.001 1.000
Medication_category2 Nominal 0–1 None 0.001 1.000
Medication_category3 Nominal 0–1 None 0.002 1.000
Medication_category4 Nominal 0–1 None 0.007 1.000

*<0.000 but not equal to 0.
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• Only cases of which all the features that we selected for this
study were available were included. We left out the concept
of missing values (these are the focus of follow-up research).

• Only cases of which the SCL-total in the post-assessment
was completed were included. We need this value to
determine the outcome of the treatment.

• Only cases of which the SCL-total in the pre-assessment
is higher than the c were included. Is already lower than
c than we cannot define the effect of the treatment in
terms of the c-criterion.

This resulted in a dataset of 219 cases. According to our
criteria, for 98 cases, the treatment was successful, and for
121 cases, the treatment was not successful.

3.4. Case format

A typical case in a CBR system consists of three parts
(Watson & Marir, 1994):

• the problem that describes the state of the world when the
case occurred;

• the solution that states the derived solution to that
problem; and

• the outcome that describes the state of the world after the
case occurred.

If CBR is used for prediction, the solution is not a part of
the case format. The outcome of the new case is based on the
outcome of the similar cases that were retrieved based on the
problem.

In each case in our casebase, the problem describes the
state of the patient before treatment starts. The problem
description consists of values (the score- and the category
values) of all features for that case. A full description of
the case features is given in Table 1. For the outcome, there
are only two possible values: 0 and 1. The value 0 means
that the cognitive behavioural therapy was not successful,
and the value 1 means that it was successful.

4. CBRth process

For CBRth, we use CBR to predict in which class a new
target case falls. We classify according to forecasting-by-
analogy (Section 2.3.2). In this section, we describe the
process steps that a target case follows within CBRth. These
are the tree steps of forecasting-by-analogy. The first step is
already described in Section 3.3. Sections 4.1 and 4.2
describe the other two steps. Forecasting-by-analogy only
covers the first two steps of the CBR cycle (RETRIEVE
and REUSE). In Section 4.3, we describe the remaining
two steps (REVISE and RETAIN) of the CBR cycle.

4.1. Search for similar cases (RETRIEVE)

For the search for similar cases, we use Formula 1 for the
NN method (Section 2.3.3). In this formula, two

components can be customised, namely, the weight wi of
every ith feature and the equation for the similarity function
between T and S ƒi(ti, si) for every ith feature. How we
defined wi is discussed in Section 4.3. For the similarity
function, we used two different methods, the category
method and the ‘score method’. For each method, we built
a variant of CBRth to investigate which of the two methods
provides better results.

The category method is the simplest of both methods. It
uses the category values of the features. The possible output
of the similarity function only includes 0 and 1. The output 1
is given when the corresponding categories of the feature
that are compared are equal for both cases, and the output
0 is given when they are not equal for both cases.

f i ti; sið Þ ¼ 1 if ti ¼ si

0 otherwise

�
(6)

The score method uses the score values.

f i ti; sið Þ ¼ 1� ai� ti � sij j if ti � sij j < 1

0 otherwise

�
(7)

In Formula 7, the parameter ai can have a different value
for each feature i (for ai=1, Formulas 6 and 7 are equal).
The effect of ai is that near values obtain a high degree of
similarity, and distant values obtain a low degree of
similarity. Because in nominal features, there is no order in
the values, ai=1 for nominal values. For the ordinal features
with a small range, we also set ai=1. For the ordinal features
with a larger range, ai is a value between 0 and 1 calculated by
Formula 8. The used values for ai are given in the seventh
column of Table 1. In the third column (range) of Table 1,
the minimum and maximum values are given.

ai ¼ number of classes feature ið Þ=
maximum value feature i� minimum value feature iþ 1ð Þ

(8)

4.2. Predicting the outcome of the target case (REUSE)

For predicting the outcome of the target case, we used
weighted voting (as explained in Section 2.3.5). There are
two possible values for the outcome class Cl, namely,
successful and not successful. For the target case, prob(Cl)
is calculated according to Formula 2 for both the possible
values of the Cl. The prediction for the target case is the
value of Cl for with prob(Cl)> 0.5.

Sun and Hui (2006) base weighted voting on KNN.
We applied a more fine-grained approach by using by
using a combination of RNN and KNN, in which we
limit the maximum number of selected cases (K), and on top
exclude the cases that are too dissimilar (R). This means k in
Formula 2 is not a fixed value, but k is a value between 0
and K.
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4.3. Remaining steps of the CBR cycle (REVISE and
RETAIN)

After a patient received and completed cognitive
behavioural therapy, we can determine the actual outcome,
that is, whether the treatment was successful or not, based
on the results of the post-assessment. In the REVISE step,
we compare the predicted outcome with the actual outcome.
We enter the value of the actual outcome as outcome in the
case. The knowledge whether a prediction was correct or not
is useful for an indication of CBRth’s accuracy.

In the RETAIN step, the target case is added to the
casebase. Changing the composition of the casebase can
also provide insight into which features are most important
in determining the best match. Particular values of the
weights may evolve over time as the casebase expands. This
means that tuning the features weights (wi) can also positively
influence the future performance of a CBR system. If the
feature weights must be tuned after each time a case is added,
it is strongly preferable that they are easy to calculate.

In the present study, we researched whether the
information gain can be used as a feature weight. For every
feature, we use the information gain that is calculated to
decide which feature should be in the top note of the decision
tree. We built a variant of CBRth in which the feature weights
are all equal (wi=1 for every i) and a variant with the
information gain for every feature. We compared both
variants to investigate which of the two provides better results.
Note that we only want to investigate whether gain works as
feature weight, not whether it is the most suitable feature
weight; at present, our dataset is simply not large enough to
draw conclusions on which kind of feature weight works best.

5. Experimental setup

The introduction describes the goal of this study as twofold:
(1) to investigate which techniques are suitable for
implementing CBRth and (2) to investigate the accuracy of
CBRth. Section 4 describes the system design of CBRth and
the steps that are successively followed to use CBRth for
making predictions on the success of treatments. To test
CBRth, we used 219 cases (Section 3.3) to investigate both

parts of our goal. In our approach, we used combinations of
a training set of 218 cases and a test set of 1 case. All possible
219 combinations of training set and test set were used.

The procedure that we followed consists of the following
eight steps:

1. Place the 219 cases in the casebase of CBRth.
2. Select one case and remove this case from the casebase.
3. Recalculate the weights corresponding to the casebase

with the remaining 218 cases (RETAIN).
4. Determine the best match of the resulting casebase for

the selected case (RETRIEVE).
5. Predict the outcome for the selected case (REUSE).
6. Check whether the predicted outcome is correct

(REVISE) and log the results.
7. Repeat steps 2–6 until all cases for all 219 combinations

of training set and test set.
8. Evaluate the accuracy of CBRth.

Our approach is based on 219-fold cross validation, to be
exact leave-one-out cross validation (Witten & Frank, 2000).
We used this approach for testing both goals of the study.
The results of this experimental setup are presented in the
next section.

6. Results

This section describes our results in two sections
corresponding to the two parts of our goal. The results
are shown in Figures 1–5. For more detailed results, see
Janssen (2009).

6.1. Best combination of techniques

The first part of the goal is to investigate which techniques
are suitable for implementing CBRth. We investigated
whether the information gain is a useful value for feature
weights, and which of the methods described in Section 4.1
is best suited for feature matching. To determine the best
combination of techniques, the following parts were
investigated in succession:
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Figure 1: Category method.
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1. feature weights and
2. feature matching.

6.1.1. Feature weights We started by investigating
whether to use the gain as feature weight or not. For this
decision, we compared the results with the gain as a
feature weight to the results without a feature weight.

We did that for both the category method and the
score method.

The results for the category method are shown in Figure 1.
In this figure, the results with the gain as feature weight are
shown as w=gain, and the results without a feature weight
are shown as w= 1. We show the results for four different
values of R in the RNN method, namely, sim≥ 0 (R=1),
sim≥ 0.6 (R=0.4), sim≥ 0.62 (R=0.38) and sim≥ 0.7
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Figure 3: Category method and score method comparison.
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(R=0.3). We combined RNN with KNN and the choice for
K=max 25.

A prediction can be made when there is at least one match
in the casebase that achieves the minimum similarity R. The
% correct predictions is the percentage predictions that were
correct for all the predictions that could be made. When
sim≥ 0, all the cases that enter the CBR cycle in the
casebase meet the restriction. The prediction is thus based
on the 25 best matches. When sim≥ 0.62 for only 23% of
the cases that entered the CBR cycle, a prediction could be
made. For 80% of these, the prediction was correct.

For the category method, when sim≥ 0, the % correct
predictions is higher for w= 1 (67%) than for w=gain
(65%), but the difference between the two rates is only 2%.
Once the restriction of the minimum similarity is set higher,
the differences between w=gain and w= 1 are greater. Here,
CBRth with the gain as feature weight gives better results.

In Figure 2, the results for the score method are shown.
The results are also shown for w=gain and w= 1, and for
the same values of R and K.

When sim≥ 0, the % correct predictions is marginally
higher for w= 1 (69%) than for w=gain (66%). When sim≥
0.6 and sim≥ 0.62, the results for w=gain are higher than
the results of w= 1 (63% and 61% vs 60% and 51%). For
sim≥ 0.6, the difference is minimal (2%), but for sim≥ 0.62,
the difference is 9%. The difference is also relatively large
when sim≥ 0.7 (57% vs 67%); however, when sim≥ 0.7 for
only a very small number of cases that enter the cycle, a
prediction could be made (3% of w=gain and 5% for w= 1).

Based on the results in this section, we decided to use the
gain as feature weight.

6.1.2. Feature matching After deciding on the feature
weight estimation, we investigated whether to use the
category method or the score method for feature matching.
The results for the category method and the score method
with the gain as feature weight are shown in Figure 3. We
show the results for four different values of R in the RNN
method, namely, sim≥ 0 (R=1), sim≥ 0.6 (R=0.4), sim≥
0.62 (R=0.38) and sim≥ 0.7 (R=0.3). We combined
RNN with KNN and the choice for K=max 25.

When sim≥0, the % correct predictions is marginally higher
for the score method (66%) than for the category method (65%),
the difference is negligible. With sim≥0.6, sim≥0.62 and
sim≥0.7, the results of the category method are higher than
the results of the score method (73%, 80% and 82% vs 63%,
60% and 57%, respectively). We conclude that the category
method gives better results than the score method.

One of the characteristics of the CBR method is that the
percentage of correct predictions improves as the restriction
on similarity increases, because the prediction is only made
if there are matches found that have a certain degree of
similarity with the new case. If we examine the results in
Figure 3, we can conclude that this is indeed the case for
the category method. The score method shows the opposite
results, namely, that there are fewer correct predictions
when the degree of similarity increases. That is surprising,
but the differences are small.

Based on the results in this section and the previous
section, we decided for CBRth to use the category method
with the gain as a feature weight.

6.2. CBRth accuracy with available data

We now present CBRth’s accuracy with the techniques we
chose in the previous section: the category method with
the gain as a feature weight. This study was performed with
the 219 cases detailed in Section 3.3. Of these 219 cases, the
treatment was successful for 98 cases (45%) and not
successful for 121 cases (55%). As the prediction never
successful is correct in 55% of the cases, 55% is the frequency
baseline. To perform well, CBRth must make predictions
with an accuracy significantly higher than 55%.

Figure 4 shows the results for the application of CBRth to
the available data. These are the results for five different
values of R in the RNN method, namely, sim≥ 0 (R=1),
sim≥ 0.5 (R=0.5), sim≥ 0.6 (R=0.4), sim≥ 0.62 (R=0.38)
and sim≥ 0.7 (R=0.3). In this figure, the results are shown
for which we combined RNN with KNN with K=max 1
(results for K=max 25 are shown in Figure 5, which is
shown later). The figure shows two bars. The first bar shows
the percentage correct predictions of the predictions that

65 67
73

80 82

65 62

73
80 82

0

10

20

30

40

50

60

70

80

90

100

sim 0 sim 0.5 sim 0.6 sim 0.62 sim 0.7

%
 c

o
rr

ec
t 

p
re

d
ic

ti
o

n
s

K=max 1

K=max 25

Figure 5: case-based reasoning therapy with K=max 1 and K=max 25.
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could be made (i.e. at least one case was selected as a best
match from the casebase), and the second bar shows for
how many cases a prediction could be made.

Obviously, with sim≥ 0 for all the cases, a prediction
could be made. The percentage correct predictions is 65%,
that is, significantly exceeding the frequency baseline. When
the restriction on similarity is higher, we may expect the
number of cases for which a match can be found to decrease.
However, we may also expect an increase in the percentage
of correct predictions. As can be seen in Figure 4, the results
show this pattern. For example, for sim≥ 0.5 for 88% of the
cases, a prediction is made, which is correct for 67% of
them. For sim≥ 0.62, a prediction is made for only 23% of
the cases, but it is correct for 80% of them.

Figure 5 shows that the best results were achieved with
K=max 1. However, the results for K=max 25 are almost
equal. As the percentage of cases for which a prediction is
made only depends on the value of R, it is the same for both
values of K. The percentage of correct predictions for both
values of K is compared in Figure 5. We only see a small
drop in the percentage for sim≥ 0.5. A straightforward
explanation for the fact that for sim≥ 0.6 the results are
the same for both values of K is that for the higher
restrictions on R for the majority of cases, only one match
is found. Naturally, when the number of cases in the
casebase increases, the number of matches may increase
too. The effect of that on the accuracy of the predictions
has not been tested yet, but it may be expected to improve
the accuracy as better and more matches can be found.

Tables 2 and 3 show the results for CBRth with K=max 1
for sim≥ 0 and sim≥ 0.62. In these tables, all the cases for
which a prediction could be made are given in four
quadrants depending on the outcome of the prediction and
the actual outcome. Again, it shows that fewer predictions
can be made for a higher restriction on similarity. With
the figures in the tables, we can calculate the sensitivity
(Formula 9), the specificity (Formula 10) and the likelihood
ratio (Formula 11) (based on Woodward (2005))

sensitivity ¼ number of true positives

number of true positivesþ number of false negatives

(9)

specificity ¼ number of true negatives

number of true negatives þ number of false positives

(10)

likelihood ratio ¼ sensitivity

1� specificity
(11)

in which positive refers to successful and negative refers
to not successful. The sensitivity, specificity and
likelihood ratio for CBRth with K=max 1 is shown in
Table 4 for five measures of similarity. The table shows
that for a higher restriction on similarity, both sensitivity
and specificity increase. This naturally increases the
likelihood ratio.

7. Discussion

The first goal of this study was to investigate which
techniques are suitable for implementing CBRth. With
respect to this goal, we found that information gain is
suitable as a feature weight. The gain is easy to calculate.
Therefore, the gain can be recalculated every time a case is
added to the casebase in the RETAIN step. This can be
carried out without the intervention of a developer, so a part
of the maintenance of the system is automated. When in
time it is discovered that some features increase in
importance for the success of the treatment, the system will
adjust itself automatically.

The use of the gain as a feature weight allows CBRth to
use all the features that are available. It is not necessary
for an expert to make a selection first. However, we included
only those features for which all the values for all cases were
available. CBRth does not deal with missing values yet. It is
therefore possible that we have left out important features.
In future research, we will incorporate the handling of
missing values.

We developed two methods to compare features. The
category method handles strict boundaries between the
values of the features. The score method uses a smooth

Table 2: Results for CBRth with sim≥ 0 and K=max 1

Prediction

Actual outcome

Success No success Total

Success 64 43 107
No success 34 78 112
Total 98 121 219

Table 3: Results for CBRth with sim≥ 0.62 and K=max 1

Prediction

Actual outcome

Success No success Total

Success 16 6 22
No success 4 24 28
Total 20 30 50

Table 4: Sensitivity, specificity and likelihood ratio for
CBRth with K=max 1

Sensitivity Specificity Likelihood ratio

sim≥ 0 0.65 0.64 1.84
sim≥ 0.5 0.69 0.65 1.96
sim≥ 0.6 0.72 0.74 2.74
sim≥ 0.62 0.80 0.80 4.00
sim≥ 0.7 0.83 0.80 4.17
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change. We expected that the score method would perform
better, because of its smooth character. To our surprise,
the category method performed better. One possible
explanation is that the score method makes similarity values
drop rapidly when the feature values differ slightly. For the
category method, the similarity is maximal when the
features are part of the same category even if they differ
slightly in feature values.

With a constraint on the similarity, CBRth can only
predict an outcome when there is at least one match that
meets the condition. With sim≥ 0.62 for only 23% of the
cases, a prediction can be made. The reliability of this
prediction is higher than without a restriction, namely, a
correct prediction is made for 80% of the cases. When used
in practice, the casebase will grow automatically. This
means that the number of cases for which a prediction can
be made with sim≥ 0.62 will increase. As the 80% correct
predictions is mainly tied to the value of R, we may expect
that for this higher percentage of predictions, the accuracy
will remain at least 80%, and may even increase when the
predictions are based on more similar cases.

The CBRth can give a prediction very fast. The
computational cost for making a prediction depends on
the number of cases and the number of features. Because
the number of features is constant, the computational costs
only depend on the number of cases; this means that
computation costs are O(n), n being the number of cases.
When adding new cases, the casebase, the information gain
of all the features has to be recalculated. The computational
costs of that are, again, O(n).

The CBRth makes binary predictions: the only two possible
outcome values are successful and not successful. We have not
looked at the degree of improvement. In practice, it is possible
that a patient is not cured after the treatment, but has
significantly improved and thus benefits from the treatment.
In future research, we will focus on adding a second outcome
measure, namely, the degree of improvement.

This study focuses on cognitive behavioural therapy for
patients with an anxiety disorder. In practice, there are more
treatment options for this group of patients. For each
treatment option, we can use CBRth with a different casebase
specific for that treatment. When the features of a new patient
are entered, CBRth can make a prediction for each treatment
option, and a final decision on treatment offered can be based
on the predictions for each form of treatment.

Because of the transparency and the interpretability of
CBR, we expect that therapists will accept CBRth for
decision support. Offering treatments, however, remains a
human activity, and it will be a long time before CBRth
grows beyond a purely advisory system.

8. Conclusions

We were able to build a CBR system (CBRth) for prediction
the success of cognitive behavioural therapy for a patient
before start of the treatment. The best techniques for CBRth

turned out to be (1) the use of the information gain for
feature weighting as described in Section 2.3.4 and 4.3 and
(2) the use of the category method as described in
Section 4.1. For the effectiveness of CBRth, we showed that
without restriction on the similarity, 65% of the predictions
of CBRth were correct, which is considerably higher than
the frequency baseline of 55%. With restrictions on the
similarity, CBRth becomes even more reliable: with sim≥0.62,
80% of the predictions were correct, but for only 23% of the
cases a prediction could be made. Future studies are necessary
to assess the effectiveness of CBR compared to the classical
method in the mental healthcare research (like regression) and
the classical methods in the artificial intelligence (like neural
networks or support vector machines).

The CBRth was demonstrated to provide useful advice in
relation to the treatment outcome of cognitive behavioural
therapy. Future studies should incorporate different
diagnostic groups and different treatment modalities. Of
special interest is the use of CBR in deciding which
treatment modality is indicated for a specific case, for
example, pharmacotherapy versus cognitive behavioural
therapy. In future research, we will also compare the
predictions of CBRth with predictions an intake staff does
before the start of treatment. If the CBRth predictions have
a higher accuracy than those of the intake staff, it is
definitely suitable as an advisory system. As CBRth even
with sim≥ 0 has an accuracy of 65%, the results of this study
provide sufficient confidence in CBR as a prediction model
in the mental health area. With restrictions on the similarity,
CBRth reaches an accuracy of 80%. Although then only for
a small part of the patients this prediction can be carried
out, these are very good results. The casebase grows during
use, and the larger the casebase becomes, the more chance
on finding a good match. The percentage of reliable (with
at least sim≥ 0.62) predictions will only increase. It has
therefore been decided that CBRth will see further
development, with the ultimate goal to incorporate it in
the daily practice of treatment assignments.
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