
Enabling Real-Time Prediction of In-game Deaths through
Telemetry in Counter-Strike: Global Offensive

Stefan Marshall
Tilburg University

Tilburg, The Netherlands
stefan@cdmgroup.nl

Paris Mavromoustakos Blom
Tilburg University

Tilburg, The Netherlands
p.mavromoustakosblom@uvt.nl

Pieter Spronck
Tilburg University

Tilburg, The Netherlands
p.spronck@uvt.nl

ABSTRACT
Esports have evolved into a major form of entertainment, drawing
hundreds of millions of viewers to its online competitive broadcasts.
Using Esports telemetry data to predict the outcome of a match is
a well-researched topic, but micropredictions of specific in-game
events are explored only sparingly. How accurately can we predict
specific in-game events within a limited time window, and how
can these predictions be used in a live broadcast? This research
aims at predicting in-game deaths using telemetry data in Counter-
Strike: Global offensive (CS:GO). We establish a data processing
pipeline to acquire and re-structure raw in-game data and propose
a set 36 features which will ultimately be used to predict in-game
deaths within a three second window. Three neural network models
are compared, namely convolutional (CNN), recurrent (RNN) and
long short-term memory (LSTM). Our results show that the LSTM
network has the best predictive accuracy (F1 0.38) when prompted,
for all 10 players of a competitive game of CS:GO. The predictions
are most influenced by features related to a player’s average in-
game death count, health points, enemies in range and equipment
value. Our model enables real-time micropredictions of deaths in
CS:GO, and may be leveraged by Esports commentators and game
observers to direct their focus on critical in-game events during a
live competitive broadcast.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning; • Human-centered computing→ User models.

KEYWORDS
Esports analytics, Result prediction, Microprediction, CS:GO, Deep
learning
ACM Reference Format:
Stefan Marshall, Paris Mavromoustakos Blom, and Pieter Spronck. 2022.
Enabling Real-Time Prediction of In-game Deaths through Telemetry in
Counter-Strike: Global Offensive. In FDG ’22: Proceedings of the 17th Inter-
national Conference on the Foundations of Digital Games (FDG ’22), Sep-
tember 5–8, 2022, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3555858.3555859

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’22, September 5–8, 2022, Athens, Greece
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9795-7/22/09. . . $15.00
https://doi.org/10.1145/3555858.3555859

1 INTRODUCTION
Competitive video games (Esports) have become one of the quickest-
growing segments of the entertainment industry [9]. The market
for Esports reached one billion US Dollar revenues in 2021 and an
audience of over 720 million viewers, and it is forecasted to grow
by 14% year-on-year in 2022 [25]. Among the most popular genres
of games played in Esports competitions is the First Person Shooter
(FPS), which can be defined as games where "a player navigates
through a virtual world from a first person perspective and interacts
in single- or multiplayer combat sequences with multiple enemies
by using a range of weaponry in order to complete an objective"
[26]. One such FPS is CS:GO, a game played by two teams of five
players in seven different competitive maps. Although released
over eight years ago, CS:GO still has over one million active players
at present and its Esports competitions regularly attract over 200
thousand concurrent viewers [45].

Esports matches generate a high volume of telemetry data, which
has enabled research on the topic of Esports analytics, the practice
of mining match telemetry data in order to understand patterns
of play and aid decision making during gameplay. Much of the
research done in this field focuses on predicting the winner of a
match, referred to as result prediction. Although a wide range of
Machine Learning (ML) models are used in these works, state of
the art seems to be using Deep Learning (DL) models [1, 42].

Despite being relatively young, the field of Esports analytics is
attracting considerable research attention. The majority of scien-
tific work in this domain revolves around result prediction in the
Multiplayer Online Battle Arena (MOBA) genre [11, 35, 36], while
despite their popularity, genres such as FPS and CS:GO in particular
are lacking in research volume. In addition, the majority of work in
Esports predictive modelling tends to focus on match-level or even
multi-match longitudinal studies, while the real-time prediction of
near-future game events (micropredictions) is scarcely researched.
It is therefore uncertain whether the state of the art in Esports
analytics is applicable to the FPS genre (particularly CS:GO) and
capable of performing accurate in-game micropredictions. This pa-
per contributes towards addressing this knowledge gap by using a
large dataset1 of competitive CS:GO matches and employing DL
methods to enable real-time in-game micropredictions. Specifically,
we propose a set of 36 features through which we implement a
model that aims to predict player deaths within a three second time
window.

Despite the low volume of works exploring micropredictions,
we consider them to be of interest to Esports commentators (cast-
ers), in-game observers and their audience. During a live Esports

1Dataset publicly available for download at: www.kaggle.com/dataset/
7360087bbc2bf244422c1fb9346e6233de32c5be99f7aaf83d812c423fcf8997

https://doi.org/10.1145/3555858.3555859
https://doi.org/10.1145/3555858.3555859
www.kaggle.com/dataset/7360087bbc2bf244422c1fb9346e6233de32c5be99f7aaf83d812c423fcf8997
www.kaggle.com/dataset/7360087bbc2bf244422c1fb9346e6233de32c5be99f7aaf83d812c423fcf8997
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555858.3555859&domain=pdf&date_stamp=2022-11-04

FDG ’22, September 5–8, 2022, Athens, Greece Stefan Marshall, Paris Mavromoustakos Blom, and Pieter Spronck

broadcast, casters must keep track of many different players at once
(10 in the case of CS:GO) and provide commentary on important
in-game events such as deaths, as they happen. CS:GO in particular
is considered a fast-paced game where the maximum length of a
round is less than two minutes and combat engagements last a few
seconds. If a caster misses the opportunity to direct their focus
towards combat in real-time, the viewing audience’s experience
may be negatively impacted. Through a model that can accurately
predict in-game deaths within a short time window, casters may be
able to allocate their focus more efficiently and briefly prepare their
storytelling, which should in turn improve the audience’s overall
experience.

2 RELATEDWORK
This chapter discusses work related to the current research. Prior
work on the topics of Esports analytics and result prediction are
reviewed in section 2.1. Section 2.2 explores research on the topic of
micropredictions. The chapter is concluded with a review of state
of the art deep learning interpretability techniques in section 2.3.

2.1 Esports analytics and result prediction
Esports matches generate a high volume of telemetry data, which is
publicly accessible thanks to open APIs provided by game publish-
ers. The broad availability of the data has enabled research on the
topic of Esports analytics. This is defined as “the process of using
Esports related data, [...], to find meaningful patterns and trends in
said data, and the communication of these patterns using visual-
ization techniques to assist with decision making processes” [20].
Such analysis is commonplace in professional Esports teams as well
as tournaments, where commentators who provide analysis during
and between matches are referred to as "statsmen". The work of
Mahlmann et al. [20] establishes a framework for encounter-based
analysis in DotA 2. As DotA 2 matches can exceed one hour in
duration, extracting encounters from raw data enables them to use
only the most relevant parts of a match to predict match outcomes.
Using four features generated at the start of encounters, their best
Logistic Regression (LR) model achieved 78% accuracy in predicting
the outcome (winning team) of an encounter.

The majority of research done in Esports analytics focuses on
result prediction. Semenov et al. [35] compared the performance of
four ML algorithms for DotA 2 win predictions, namely 1) Naive
Bayes, 2) LR, 3) Gradient Boosting and 4) Factorization Machines
(FM), a general purpose predictor combining support vector ma-
chines with factorization models [31]. The comparison by [35]
showed their FM model performing best with an AUC value of
0.706, closely followed by the boosting model at 0.701.

Hodge et al. [12] explored this topic further by using LR and
Random Forests (RF) to conduct DotA 2 win predictions. Using only
pre-match data, LR performed best with a 58.75% accuracy. Using
in-game data from the first 20 minutes of gameplay and only profes-
sional match data, RF performed best with 74.59% accuracy, while
with a mixed dataset of professional and casual matches, RF per-
formed best with 77.51% accuracy. Overall, the models performed
better than a random guess in predicting the result of a DotA 2
match. Seeing room for improvement, Hodge et al. [11] approached
the task again with an expanded dataset and newly engineered

features, and achieved peak prediction accuracy of 77.51% on the
mixed dataset and 74.59% on the professional dataset after only five
minutes of gameplay data, using an RF model. On both datasets,
RF was followed closely by LR and gradient boosting in terms of
performance.

Aside from traditional ML methods, some works explore result
prediction through deep learning techniques as well. Akhmedov
et al. [1] compared LR to both a RNN and a LTSM neural network.
The LSTM model achieved 93% average accuracy in predicting the
match outcome, versus 88% of the RNN and 82% of LR. Predicting
wins in a different game (League of Legends) Silva et al. [36] found
that a traditional RNN outperformed LSTM with a peak accuracy
of 83.54% with gameplay data from minutes 20 through 25.

Although the majority of work on Esports analytics focuses on
the MOBA genre, some do explore FPS and CS:GO in particular.
Makarov et al. [21] utilized TrueSkill, a player skill ranking system
to predict match outcomes, and achieved a peak accuracy of 0.62,
although it is unclear whether the prediction was done post-game.
Xenopoulos et al. [42] compared the performance of LR, gradient
boosting and DL in CS:GO win prediction. Their results show sim-
ilar performance in terms of log-loss between gradient boosting
and NN with LR performing notably worse. They then employed
their model to investigate optimal team spending decisions and
define a performance metric, Optimal Spending Error (OSE) to rank
how closely team spending decisions line up with predicted optimal
spending decisions, and found that win probability is closely linked
to OSE.

In conclusion, a wide variety of ML techniques have been applied
to Esports analytics and result prediction, and in works that com-
pared neural networks with traditional ML, the neural networks
typically performed as well as the best traditional models or better.
For that reason, in this paper we compare three types of neural
networks, expecting them to yield high predictive accuracy in the
context of our experiment.

2.2 Micropredictions
An intuitive next step after Esports match result prediction is to
make more granular predictions about specific events taking place
within short time windows during a match. This is referred to
as micropredictions, as coined by Katona et al. [13]. The authors
present a DL model that can predict whether individual players will
die within a five second window during DotA 2 games. Telemetry
data was collected from 10,000 (semi-)professional matches, from
which a feature set of 287 features per player was created. These
features include the player state (i.e strength, health points) and
position, and player abilities (i.e cooldown times, ability usage costs).
Additionally, approximately half of the feature space was used to
represent the hero ID in a one-hot encoded form. The specific
hero used by the player has unique benefits and drawbacks, and is
therefore a valuable (but computationally costly) feature. The model
presented is a feed-forward neural network, which achieved 0.377
precision and 0.725 recall on unseen data. This indicates that deep
learning could be suitable for making micropredictions in Esports.
The authors do note that the model is limited to post-game analyses
or professional environments where a live feed of the telemetry
data is available. A second limitation is that balance changes made

Enabling Real-Time Prediction of In-game Deaths through Telemetry in Counter-Strike: Global Offensive FDG ’22, September 5–8, 2022, Athens, Greece

to the game over time may harm generalizability on newer game
data.

The research by Katona et al. [13] expanded on the work of
Cleghern et al. [4] who, using similar DotA 2 telemetry data, pre-
dicted changes in player health during a match. This was done by
splitting health data into small and large changes, and predicting
these separately with different models. For large changes, a combi-
nation of statistical methods was used to predict both the direction
and the magnitude of the health change, while small changes were
predicted using an auto-regressive moving average model. Their
work is limited by the smaller dataset (542 matches) and limited
featureset (only health data). Despite a peak accuracy of 77.2% in
predicting small health changes five seconds into the future, it per-
formed poorly predicting the timing for larger health changes 10
seconds into the future.

2.3 Deep learning model interpretability
As the performance of machine learning models approaches or
even exceeds human accuracy in classification in prediction tasks,
fields like healthcare, finance and criminal justice are warming up
to the use of ML in their decision making. Advanced ML models
often work in a black-box fashion, and the adoption of ML in these
high-stakes fields may be hampered by the inability of end users to
understand and value the output of the models. A prerequisite to
building the necessary trust is the interpretability of a model. There
is no generally accepted definition of this concept, but Lipton et al.
[17] make an attempt to define the properties of an interpretable ML
model. Interpretability, or transparency, can be considered at three
levels, namely 1) simulatability, or understanding of the model as
a whole, 2) decomposability, or understanding of the individual
features, and 3) algorithmic transparency, an understanding of the
training algorithm. They note that the degree of simulatability is
typically low for complex machine learning techniques like deep
learning, and that "modern deep learning methods lack algorithmic
transparency". Overall, their work indicates that there are substan-
tial challenges in creating interpretable models and even in defining
what interpretability means for a specific use case. Considering
the current research focuses on using deep learning techniques
for micropredictions in CS:GO, interpretability will be approached
at the levels of simulatabality and decomposability. Algorithmic
transparency will not be considered further.

How does one make a machine learning model interpretable?
Ribeiro et al. [32] attempt to answer this question with LIME, an
explanation technique can be used to explain the predictions of
any machine learning classifier by outputting a list of explanations
which reflect the contribution of individual features to a prediction.
Their work showed that the use of LIME allowed non-experts to
pick classifiers which would generalize reasonably well on real
world data, and helped end users of neural networks understand
when and why to trust a model. Since its inception, use of LIME
has become commonplace, finding applications in various ML tasks
such as early detection of Parkinson’s disease [19] and predicting
determinants of foreign direct investment inflow [37]. In assessing
the effectiveness of the LIME framework on four state-of-the-art
classification algorithms, Dieber et al. [6] interviewed end users
who were not familiar with LIME and found that LIME did increase

the interpretability of ML models, but that more work was needed
in terms of usability.

Building off LIME and similar methods, Lundberg et al. [18] intro-
duced their unified prediction interpretation framework: SHapley
Additive exPlanations, or SHAP. This assigns an importance value
to each feature, in order to interpret what features contribute to a
specific prediction. On the assumption that a "good model expla-
nation should be consistent with explanations from humans who
understand that model", they compared the explanations from LIME,
SHAP, and other methods to human explanations and found that
SHAP values showed stronger agreement to human explanations
than other methods. Since then, several works have demonstrated
the reliability and utility of SHAP values in ML tasks such as RNA
sequence tissue classifiers [46] and predictions from medical sensor
data [3].

Several works attempt to compare the strengths of LIME and
SHAP with mixed results [8, 22]. None of the works reviewed in
section 2.1 utilized either LIME nor SHAP, and so it is not clear that
either technique is a preferred choice for the application of result
prediction or micropredictions.

3 EXPERIMENT
This chapter presents the game, dataset, feature extraction and
evaluation methods that were used for in-game death prediction.

3.1 Counter-Strike: Global Offensive
Counter-Strike: Global Offensive (CS:GO) is the fourth game in
the Counter-Strike series developed by Valve Software, released in
2012. It is a FPS where two teams of five players, namely Terrorists
(T) and Counter-Terrorists (CT), face each other in armed combat.
In Esports play, the game mode that is used is DE, where teams
must either detonate (T) or defuse (CT) a bomb. Alternatively, a
round can be won by completely eliminating the opposing team
[41]. Players start with an $800 budget and choice of 34 guns divided
into five categories, each with their own price and characteristics
such as recoil and clip size. Depending on metrics like team and
individual kills and deaths, players will start the next round with an
increased or decreased cash budget (with a maximum of $16,000).
It follows that good play leads to a larger budget, which allows for
the purchase of more expensive and powerful weaponry.

In competitive play, a match consists of 30 rounds, with each
round lasting a maximum of one minute and 55 seconds. The first
team to win 16 rounds will win the match. In the case of a draw after
30 rounds, a maximum of 6 rounds of overtime will be played [33].
Professional championships are held throughout the year, with the
biggest one known as the "Majors", sponsored by Valve with a prize
pool up to $2 million [29]. Most CS:GO tournaments are streamed
and freely accessible online, and match replay data is published
after the matches on websites such as HLTV.org [10].

3.2 Dataset collection and preprocessing
A dataset was compiled from publicly available CS:GO match re-
play files (demofiles) published on HLTV.org. These files contain a
serialization of the data transferred between clients (player PCs)
and the game server during a match of CS:GO. As this includes all
client inputs (such as attacks and movements) as well as server-side

HLTV.org

FDG ’22, September 5–8, 2022, Athens, Greece Stefan Marshall, Paris Mavromoustakos Blom, and Pieter Spronck

Table 1: Overview of the processed dataset.

Metric Amount

Matches 833
Rounds 21,300
Total datapoints 17,687,784
Positive class datapoints 425,107
Negative class datapoints 17,262,677
Deaths 141,702
Gameplay hours 491
Unique teams 227

events, the demofiles enable replaying a match with high accuracy.
No discernment was made in the ranking of teams while collecting
the match data, as all matches were played as part of tournaments
with prize pools and therefore qualify as professional matches with,
we assume, highly skilled teams. Although a CS:GO micropredic-
tion model would find most use in a real-time environment, a live
telemetry feed of CS:GO matches is typically only available to the
hosts or organizers of these matches, necessitating the use of post-
game demofiles in the present research. The raw dataset contains
nearly all competitive CS:GO matches broadcast on HLTV between
September 6 and October 3 2021, save for an incidentally missed
match due to connection errors. Table 1 shows on overview of the
processed dataset.

The demofiles are an unstructured and low-level data stream
that is not suitable for analysis and death prediction. To convert the
demofiles into a usable format, the free awpy package by Xenopou-
los et al. [43] is used, which converts the demofiles into a set of
dataframes. Some demofiles failed to parse, either due to errors in
the files or bugs in the parser. As this concerned less than 3% of
the files, we excluded these files from our dataset. Once parsed, the
resulting dataframes are saved in parquet files. The parquet file for-
mat is a part of the Hadoop ecosystem that allows for compressed,
efficient columnar data representation [2], which is used to store
the structured data in 2% of the storage space required for the raw
data.

After parsing and restructuring, erroneously sampled rounds
are removed from the dataframes. Some rounds may thus have
been incorrectly recorded or parsed. Loss of connection of a player
during the round can also introduce errors. All rounds that are
shorter than 10 seconds, have different frame lengths between
players, or are missing ticks (approximately 5% of all rounds) were
removed. A manual review of failed rounds did not reveal a pattern
of data loss, so it is assumed that the data cleaning did not introduce
noteworthy bias to the dataset. All preprocessing steps mentioned
in this chapter are conducted with the pandas package in Python
[30].

3.3 Feature extraction and engineering
The parsed data is stored in several dataframes and contains hun-
dreds of columns with many of them being duplicate or presented
in a format not directly suitable for the purpose of classification
through neural networks. We use our intuition and experience of

Table 2: List of all features generated.

Feature Explanation

hp Remaining health points of the player
armor Remaining armor points of the player
isBlinded Whether the player is blinded
isAirborne Whether the player is airborne
isDucking Whether the player is ducking
isStanding Whether the player is standing
isScoped Whether the player is aiming down the scope
isWalking Whether the player is walking (not running)
equipmentValue Total player equipment value
cash Remaining player cash
hasHelmet Whether the player has a helmet
kills_from_avg Distance of players kill count from average
deaths_from_avg Distance of players death count from average
total_hp_enemy Total health points of enemies
total_hp_team Total health points of teammates
num_enemy_alive The number of enemies alive
num_team_alive The number of teammates alive
enemy_in_range_200 Number of enemies within 200 units range
enemy_in_range_500 Number of enemies within 500 units range
enemy_in_range_1000 Number of enemies within 1000 units range
enemy_in_range_2000 Number of enemies within 2000 units range
enemy_hp_in _range_500 Total health points of enemies within 500 units

range
enemy_hp_in
_range_1000

Total health points of enemies within 1000 units
range

enemy_hp_in
_range_2000

Total health points of enemies within 2000 units
range

enemy_equipment
_in_range_500

Total equipment value of enemies within 500 units
range

enemy_equipment
_in_range_1000

Total equipment value of enemies within 1000 units
range

enemy_equipment
_in_range_2000

Total equipment value of enemies within 2000 units
range

team_in_range_200 Number of teammates within 200 units range
team_in_range_500 Number of teammates within 500 units range
team_in_range_1000 Number of teammates within 1000 units range
equipment_value_team Total equipment value of teammates
equipment_value_enemy Total equipment value of enemies
distance_closest_enemy Distance to the closest enemy
hp_closest_enemy Health points of the closest enemy
active_weapon Active weapon category of the player (one-hot en-

coded)
weapon_closest_enemy Active weapon category of the closest enemy (one-

hot encoded)

how CS:GO is played to determine what features should be ex-
tracted or engineered. This is a non-exhaustive approach, but nec-
essary as the large dimensionality of the raw data prevents timely
training of a neural network, considering the hardware limitations
(detailed in section 3.4). The features generated include a player’s
equipment and stats, enemies and teammates within certain range,
and enemies’ equipment. The full list of the 36 features generated
can be seen in table 2.

The engineered features are exported into one parquet file per
player per round. Categorical data (such as a player’s active weapon)
is one-hot encoded. We apply a sliding window with a lag of five
steps, meaning that the dataset is restructured to include the current
and the previous four steps, creating t-0 through t-4 instances of
every feature. After one-hot encoding and windowing, the number
of feature columns is 250.

The forecast variable is created as a binary variable where the
negative class represents the player will not die within three sec-
onds and the positive class represents the player will die within

Enabling Real-Time Prediction of In-game Deaths through Telemetry in Counter-Strike: Global Offensive FDG ’22, September 5–8, 2022, Athens, Greece

three seconds. Three seconds is empirically chosen for the fore-
cast window as a shorter window may limit the usefulness while a
longer window sacrifices considerable predictive power as CS:GO
combat encounters typically only last a few seconds. The matches
are divided into a 70/15/15 train/validation/test split.

3.4 Neural network implementation
The neural networks used are implemented in TensorFlow (TF), a
commonly used Python package for expressing machine learning
algorithms and executing such algorithms [38]. We use Google
Colab Pro+ to train the models as it provides affordable top-tier
Graphics Processing Units (GPUs) that would otherwise not be
accessible for this research. The use of high end GPUs is necessary
to reduce training time as TF is optimized for GPU acceleration. This
does introduce several practical restrictions for the research, namely
1) relatively small storage available in a Colab VM, 2) no guarantee
of GPU availability (fair use policy) and 3) a maximum session time
of 24 hours. These restrictions cause limitations on the current
research in terms of processed dataset size and hyperparameter
tuning.

Three neural network architectures were implemented and com-
pared against each other: A convolutional neural network (CNN),
which is a type of neural network in which the layers utilize con-
volution, a mathematical operation that expresses the amount of
overlap of one function as it is shifted over another function [39].
CNN are used for processing data with a known grid-like topology
such as image data (a two dimensional grid of pixels) and time series
data (one dimensional grids) [7]. CNNs are most often used for two
dimensional data tasks like image classification and object detection
[27]. One dimensional CNN find frequent application in classifying
medical sensor data such as ECG signals [15] but can be used for
any time series data such as inventory forecasting [44] and stock
price prediction [24]. Although none of the reviewed literature on
Esports result prediction or microprediction used CNN, the time
series nature of the data used in the current research make CNN a
relevant candidate.

Recurrent neural networks (RNN) are a broad class of neural
networks using feedback loops that enable them to remember and
learn from previous inputs. It is typically used for handling se-
quential or temporal data. It finds frequent use in natural language
processing tasks, like spelling correction [14] and hate speech de-
tection [5], as its memorization allows it to remember the context
of a word or phrase. RNNs have found successful use in Esports
result prediction in the works of Silva et al. [36] who achieved peak
performance through an RNN model compared to an LSTM and of
Akhmedov et al. [1] whose RNN model was outperformed by an
LSTM network. These mixed results encourage further comparison
of the two architectures.

Long short-term memory (LSTM) networks are a subclass of
RNNs. They are intended to resolve the vanishing gradient prob-
lem encountered in traditional RNN. LSTM, like RNN, have found
applications in natural language processing [40], but also in gain
prediction [16] where LSTM showed higher accuracy but lower F1
score than RNN. Applying LSTM, RNN and CNN to stock price
prediction, [34] found that CNN performed best.

Overall, literature shows that all three DL model architectures
are valid choices for time series data, and that the best architecture
is highly application specific.

3.5 Hyperparameter tuning
A common way to adjust hyperparameters for a TF model is to use
the GridSearchCV function from the scikit-learn [28] package in
combination with the fit function in TF. This approach was not
used because the rounds-based nature of the processed data neces-
sitated the use of the train_on_batch function in TF which does not
work in combination with GridSearchCV. In addition, the Colab
session time limits prevent certain hyperparameters (like a larger
number of epochs) to be tested succesfully. For these reasons we
opted to keep hyperparameter tuning minimal, primarily using
default settings and code samples from TF documentation [38].
The only hyperparameter we tuned was the number of epochs,
where we experimented using values [1, 2, 3, 4, 5, 8, 10]. We expect
that increasing the number of epochs will increase prediction accu-
racy, up to a hypothetical point of diminishing returns. Due to the
aforementioned computational restrictions, the highest number of
epochs that all models could efficiently be trained for was 5, so this
number was used. The Adam optimizer is used for all models, as it
is a common choice for time series data, utilizing the default values
[learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, ams-
grad=False]. Furthermore, the binary_crossentropy loss function is
used to compile the models. The batch size is the amount of rounds
present in a match, due to the connected nature of rounds within a
match, versus the relative disconnect between matches themselves.
This allows the LSTM model to "learn" from connections between
rounds as well, rather than purely the data from the current round.

To establish appropriate class weights to train the model, we
manually sampled 20 randomly selected rounds and computed their
class weights using sklearn.compute_class_weight function. This
showed that the class weights ranged from {0:0.5, 1:2} to {0:0.5,
1:40}, a consistent weight for the negative class with a strongly
varying weight of the positive class. We trained the models with
class weights [1:2, 1:10, 1:20, 1:40] and found the best performance
using class weights {0:0.5, 1:2}, so these weights were used.

3.6 Network architecture
The architecture, or layers of the neural networks are largely de-
rived from TF documentation and default values. The detailed ar-
chitectures for the models can be seen in Figure 1.

Most layers use ReLU activation as it is the standard in literature
due to its all-round efficiency and suitability. The LSTM layers use
tanh activation as they require this to enable GPU acceleration.
The sigmoid output layer is chosen as it grants an output between
values 0 of 1, suitable for the binary classification problem of CS:GO
death prediction. Other choices (like padding, # of filters) were left
to default or chosen as recommended in TF documentation.

3.7 Evaluation methods
A number of the works discussed in section 2.1 use accuracy as
a metric for evaluating performance. This metric is inadequate
for imbalanced datasets where the positive classification event is
rare, such as deaths in CS:GO. Two commonly used metrics for

FDG ’22, September 5–8, 2022, Athens, Greece Stefan Marshall, Paris Mavromoustakos Blom, and Pieter Spronck

Figure 1: Model showing the specific layers utilized in the three models. The same dense/output layers are used for all models.

imbalanced classification are precision (the fraction of positive
classifications that were correct) and recall (the fraction of true
events that were detected) [7]. One prior work on micropredictions
[13] also evaluated model performance using precision and recall.

Considering the use case of an Esports caster using micropredic-
tions as a supplement during CS:GOmatches, it is not clear whether
it would be preferable to prioritize for high recall or precision. Both
false positive and false negative classifications could cause a caster
to lose focus of an important gameplay event, harming the viewing
experience. However, it is possible that false positives may indicate
near-death events in the game which would still be of interest to
the caster. If this is the case, a model skewed towards recall may
be preferable, but this assumption must be tested by reviewing
individual predictions of a model. We evaluate the performance of
the three models by comparing the F1 score (a function of precision
and recall) on validation data. The best performing model is used
on test data, and the ROC curve as well as AUC is included in the
results. The ROC curve gives insight into the tradeoff between true
positives and false positives, and offers a baseline comparison (No
Skill Classifier), while the ROC AUC indicates the overall perfor-
mance, enabling the comparison of the models to future works
exploring CS:GO death prediction.

3.8 Interpretation frameworks
The review of interpretability frameworks in section 2.3 revealed
two frameworks, LIME and SHAP, neither of which are used in the
known Esports result prediction or microprediction literature. As
the current research is dealing with Esports time series data, the
SHAP package is not suitable as it cannot handle variable input
lengths while CS:GO rounds do vary in length. For this reason, the
LIME package [32] is used to manually review randomly selected
rounds and inspect individual predictions to understand the features
driving those predictions.

To make the data suitable to train the LIME explainer, the one-
hot encoding must first be reversed, as LIME cannot use one-hot
encoded features. Then, the prediction classes are downsampled
using the pandas resample function with 500 samples. Finally, the
explainer is trained on 50 randommatches and the one-hot encoding
is reapplied.

4 RESULTS
In section 4.1, the performance of the three neural networks is
compared. Section 4.2 discusses the interpretation of the best model
in terms of CS:GO features.

4.1 Neural network performances
Table 3 shows the performance metrics of the three tested models.
We observe that the performance for the negative class on precision,
recall and F1 score are identical for the three models. These high
scores on the negative class (no death) naturally occur due to the
imbalance of the dataset. In classifying the positive class, the three
models show comparable performance, with precision and recall
numbers varying at the default threshold value of 0.5, but the F1
scores show LSTM performing best at F1 0.38, followed by CNN
(0.37) and RNN (0.36).

The best performing model was shown to be the LSTM model.
On test data, this model achieved a precision of 0.38, recall of 0.37
(at default threshold) and an F1 score of 0.38. The LSTM model
showed identical F1 scores on training, validation and test data,
indicating no sign of over- or underfitting.

Figure 2 shows the ROC curve for the LSTM model, illustrat-
ing the tradeoff between false positives and true positives. The
AUC for this model is 0.92. Compared to the no skill classifier (0.5)
serving as a baseline, the LSTM demonstrates considerably better
performance.

Figure 3 illustrates the predictions made for all ten players during
a round of a randomly selected CS:GO match. These show that

Enabling Real-Time Prediction of In-game Deaths through Telemetry in Counter-Strike: Global Offensive FDG ’22, September 5–8, 2022, Athens, Greece

Table 3: Performance comparison of the three models on
precision, recall and F1 score at threshold value 0.5 on val-
idation data.

Class Model Precision Recall F1 score

0
CNN

0.98 0.99 0.99RNN
LSTM

1
CNN 0.42 0.33 0.37
RNN 0.54 0.27 0.36
LSTM 0.39 0.36 0.38

Figure 2: ROC curve for the LSTM model on test data com-
pared to a No Skill Classifier

in the observed round, at the default threshold of 0.5, a positive
classification only occurs one to two seconds before a death if at all,
but at a lower threshold of 0.25, positive classifications could already
occur around 5-10 seconds before the actual death. It can also be
observed that death probabilities are greater than 0 for players that
did not die during a round, likely because they were the victors in
a combat encounter. For the round shown, the model predicted at
least some (>0.25) probability of death 1-3 seconds before it occurred.
From a manual review of numerous rounds, we conclude that the
model is more likely to predict a death prematurely than to not
predict it at all. The graph shown in figure 3 is typical of the matches
we observed, and additional graphs can be found in [23].

4.2 Model interpretation
The LIME explainer offers an explanation of the driving features for
a specific prediction. We randomly reviewed 20 predictions from
different matches to gain an understanding of what features were

Figure 3: Death predictions for 10 players during the 3rd
round of the match young-ninjas-vs-saw-youngsters-m1-
nuke using the LSTM model. The red dotted line represents
prediction probability of player death within 3 seconds. The
blue line represents actual player death within 3 seconds.
The sharp drop of the blue line indicates death (end of 3
secondwindow). The grey lines indicate different prediction
thresholds [0.25, 0.5, 0.75].

Figure 4: LIME Explainer scores for a randomly selected neg-
ative and positive prediction during the 22nd round of the
match young-ninjas-vs-saw-youngsters-m1-nuke using the
LSTM model. The features with orange bars weigh in favor
of the positive class, while the blue bars contribute towards
the negative class.

most influential. Figure 4 shows an example of the LIME explainer
output for two predictions, one negative (close to 0) and one positive
(near 1). Unfortunately, due to formatting limitations of the LIME
package, the full feature list, names, and values could not always be
displayed. Note that the LIME values (next to the bars) do not sum
to 1 due to the output data of the model, but this does not affect
its usability in interpreting the predictions. Some features seem

FDG ’22, September 5–8, 2022, Athens, Greece Stefan Marshall, Paris Mavromoustakos Blom, and Pieter Spronck

to appear multiple times as they are windowed 5 seconds into the
past, creating t-0 to t-4 instances of every feature.

For the negative prediction, it can be noted that a value for
deaths_from _avg_t-0 greater than 0.62 would indicate player death
is likely. This suggests that if a player has died considerably more
than average, their skill level is low enough that they may die even
when other features weigh in their favor. It also shows that having
over 53 health points, teammates having more valuable equipment,
and not being blinded, are good indicators that a player will live.
On the other hand, the number of enemies within ranges 1000, 500
and 200, as well as whether the player is running, all suggest the
player may die.

The positive prediction utilizes a similar set of features with
different values. Having fewer deaths than average weighs in fa-
vor of survival, while having more deaths, less than 53 health
points, walking, low team health points and enemies within range
500 all contribute towards predicting player death. Interestingly, a
weapon_closest_enemy value of 5 (the encoded value for Assault
Rifles) weighs in favor of the player living. This suggests that this
weapon type is ill suited for close-range encounters.

Overall, the above figures combined with several manually re-
viewed predictions indicate that the importance levels of the fea-
tures that drive the predictions are logical, and align with our
intuition and knowledge of how CS:GO is played.

5 DISCUSSION
The purpose of this research was to utilize deep learning to predict
in-game deaths in CS:GO. Section 5.1 summarizes the key findings.
In section 5.2, the limitations of this research are discussed.

5.1 Key findings
Out of the three models we compared, LSTM was found to be the
best performing model (based on F1 score) for predicting deaths in
CS:GO. This is largely in line with expectation, as literature showed
LSTM is considered to be an improvement on RNN. However, it
should be noted that the differences in performance were small, at
most 0.02 F1 points. This is possibly due to same structure of dense
layers used in all three models. Further hyperparameter tuning
could affect the performance ranking of these models. This belief
is strengthened by the fact that Silva et al.[36] and Akhmedov
et al.[1] both used RNN and LSTM for Esports result prediction
and showed conflicting results as to the best predicting model.
Observing predictions from the LSTM model showed that at the
default threshold value it will predict most deaths one second prior
to occurring, whereas lowering the threshold will allow the model
to anticipate deaths sooner, at the cost of increased false positives.
This may be preferable for the Esports broadcasting use case, where
a caster may benefit from false positives when they indicate a
near-death experience. The runtime is approximately 5ms per 10
datapoints (one prediction for all 10 players in a match), indicating
sufficient speed to perform these predictions in real-time, if a real-
time data feed was available. Overall, we can conclude that deep
learning can be used to predict deaths in CS:GO matches.

In terms of model interpretability, the LIME explainer showed
that the typical features used to drive predictions were the amount
of deaths from average, the amount of health points, enemies in a

range, equipment value of the team and of enemies, whether the
player was blinded and whether they were walking or running.
These features all align with our intuition of CS:GO. Having fewer
health points means a player is closer to death, more enemies nearby
represents impending danger and things like sight or movement
speed are easily understood as impacting a players survivability.
There are several noteworthy finds in the features that are omitted
from the LIME graphs as they provide less predictive power. Con-
trary to expectation, the number of kills from average, the number
of teammates in a range and the active weapon of player and en-
emy all did not appear in any of the graphs produced by the LIME
explainer, meaning they provided little predictive power. Despite
this expectation, overall our intuition suggests that deaths from
average, health points, enemies in a range, and equipment value
can be reasonable indicators of upcoming player death.

5.2 Limitations
The current research succeeded in using deep learning for CS:GO
death predictions. Despite this, we identify four potential limita-
tions of this research, which may warrant further research.

Firstly, the evaluation metrics used in this research (precision,
recall, F1 score and ROC/AUC) don’t give a complete picture of
model performance for CS:GO death prediction, as different types
of mispredictions may have a different impact on the Esports caster
relying on these predictions. In their work, Katona et al. [13] classify
mispredictions in four categories:

(1) False negatives where a player will die, but it was not pre-
dicted

(2) False positives where a player will die, but not within the
three second window

(3) False positives where a player will not die, but the situation
may be considered as dangerous

(4) False positives where a player will not die, and the situation
is not considered as dangerous

A model producing a high number of category 1 errors can still
be useful, as it will provide less frequent predictions with a higher
certainty. A model frequently producing category 2 and 3 errors
may arguably prove useful as it will still provide the caster with a
relevant indication of tense gameplay moments. Finally, category 4
errors will harm the usefulness of the model in the Esports casting
use case. To distinguish between category 3 and 4 errors, CS:GO
domain expertise is needed to (visually) analyse these positive
predictions and determine the danger of the combat encounters.

Secondly, the data processing pipeline and model rely on match
demo files that are only published after a match is over. For the
purpose of an Esports caster needing to conduct real-time death
prediction during a match, these demo files would not be available.
Live telemetry data is typically only available to the hosting insti-
tution of a match and its broadcasters and so was not used in this
research. To fulfil this use case, both the pipeline and model need to
be adjusted to utilize live data. Despite this limitation, our research
has shown that our best performing model could in fact be used
to conduct micropredictions in real time if such a datafeed were
available, as 1) it does not rely on complete match data to predict
deaths, and 2) it can deliver a prediction for all ten players in a
match in 5ms.

Enabling Real-Time Prediction of In-game Deaths through Telemetry in Counter-Strike: Global Offensive FDG ’22, September 5–8, 2022, Athens, Greece

Third, the LIME classifier only outputs feature importance values
for specific predictions, and so does not provide a global overview of
what features are most important. Unlike with SHAP, where there
is precedent to simply sum and average values, it is not clear what
the correct practice is for assessing LIME values in aggregate. This
creates a reliance on manual review of a small subset of predictions
and drawing conclusions from this. While usable, this is potentially
less illustrative than an automated aggregation approach with a
larger sample size.

Finally, the hyperparameter tuning done in the current research
was minimal, due to the restrictions on computational resources.
The downside of this is that any performance increase attainable
with further hyperparameter tuning goes unexplored. A continua-
tion of this research may benefit from more extensive hyperparam-
eter tuning.

6 CONCLUSION
This paper presents three different neural networks aimed at pre-
dicting player in-game deaths in CS:GO in real-time. We establish a
data processing pipeline to turn raw CS:GO match data into an ML
ready dataset suitable for conducting micropredictions. Then, we
compare the performance of the three models on this dataset, where
LSTM shows the best performance in terms of F1 score. The ROC
curve shows that the LSTMmodel outperforms a "no skill" classifier
and this, combined with further review of individual predictions,
shows that the LSTM model may indeed be valuable for the use
case of a storytelling aid in CS:GO Esports live casting. Through
the LIME explainer, we discovered the most important features
for predictions (deaths from avg, health points, enemies in range,
equipment value, is blinded and is walking) and established that the
model operates in an interpretable way that is consistent with our
intuition of CS:GO gameplay. Overall, we conclude that deep learn-
ing can be used to predict in-game deaths in CS:GO, and that the
extent to which it succeeds in this is dependent on hyperparameter
tuning. We furthermore conclude that the predictions of the neural
network can successfully be interpreted in terms of the relative
importance of CS:GO features through use of the LIME explainer.
Further research may explore additional hyperparameter tuning
to improve predictive performance. It may also explore generating
additional features or parsing the demo data at a higher resolution,
or combining LIME data from many predictions in order to create
a global rather than local ranking of feature importance.

REFERENCES
[1] Kodirjon Akhmedov and Anh Huy Phan. 2021. Machine learning models for

DOTA 2 outcomes prediction. arXiv:2106.01782 [cs] (June 2021). http://arxiv.org/
abs/2106.01782 arXiv: 2106.01782.

[2] Apache. 2021. Apache Parquet. https://parquet.apache.org/documentation/latest/
[3] Michal Bugaj, Krzysztof Wrobel, and Joanna Iwaniec. 2021. Model Explain-

ability using SHAP Values for LightGBM Predictions. In 2021 IEEE XVIIth In-
ternational Conference on the Perspective Technologies and Methods in MEMS
Design (MEMSTECH). IEEE, Polyana (Zakarpattya), Ukraine, 102–106. https:
//doi.org/10.1109/MEMSTECH53091.2021.9468078

[4] Zach Cleghern, Soumendra Lahiri, Osman Özaltin, and David L. Roberts. 2017.
Predicting future states in DotA 2 using value-split models of time series attribute
data. In Proceedings of the 12th International Conference on the Foundations of
Digital Games. ACM, Hyannis Massachusetts, 1–10. https://doi.org/10.1145/
3102071.3102095

[5] Amit Kumar Das, Abdullah Al Asif, Anik Paul, and Md. Nur Hossain. 2021.
Bangla hate speech detection on social media using attention-based recurrent

neural network. Journal of Intelligent Systems 30, 1 (April 2021), 578–591. https:
//doi.org/10.1515/jisys-2020-0060

[6] Jürgen Dieber and Sabrina Kirrane. 2020. Why model why? Assessing the
strengths and limitations of LIME. arXiv:2012.00093 [cs] (Nov. 2020). http:
//arxiv.org/abs/2012.00093 arXiv: 2012.00093.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org

[8] Alex Gramegna and Paolo Giudici. 2021. SHAP and LIME: An Evaluation of
Discriminative Power in Credit Risk. Frontiers in Artificial Intelligence 4 (Sept.
2021), 752558. https://doi.org/10.3389/frai.2021.752558

[9] Kirstin Hallmann and Thomas Giel. 2018. eSports – Competitive sports or
recreational activity? Sport Management Review 21, 1 (Jan. 2018), 14–20. https:
//doi.org/10.1016/j.smr.2017.07.011

[10] HLTV. 2021. HLTV. https://www.hltv.org/
[11] Victoria Hodge, Sam Devlin, Nick Sephton, Florian Block, Peter Cowling, and

Anders Drachen. 2019. Win Prediction in Multi-Player Esports: Live Professional
Match Prediction. IEEE Transactions on Games (2019), 1–1. https://doi.org/10.
1109/TG.2019.2948469

[12] Victoria Hodge, Sam Devlin, Nick Sephton, Florian Block, Anders Drachen, and
Peter Cowling. 2017. Win Prediction in Esports: Mixed-Rank Match Prediction
in Multi-player Online Battle Arena Games. arXiv:1711.06498 [cs] (Nov. 2017).
http://arxiv.org/abs/1711.06498 arXiv: 1711.06498.

[13] Adam Katona, Ryan Spick, Victoria J. Hodge, Simon Demediuk, Florian Block,
Anders Drachen, and James Alfred Walker. 2019. Time to Die: Death Prediction
in Dota 2 using Deep Learning. In 2019 IEEE Conference on Games (CoG). IEEE,
London, United Kingdom, 1–8. https://doi.org/10.1109/CIG.2019.8847997

[14] A. Cumhur Kinaci. 2018. Spelling Correction Using Recurrent Neural Net-
works and Character Level N-gram. In 2018 International Conference on Ar-
tificial Intelligence and Data Processing (IDAP). IEEE, Malatya, Turkey, 1–4.
https://doi.org/10.1109/IDAP.2018.8620899

[15] Dan Li, Jianxin Zhang, Qiang Zhang, and Xiaopeng Wei. 2017. Classification of
ECG signals based on 1D convolution neural network. In 2017 IEEE 19th Interna-
tional Conference on e-Health Networking, Applications and Services (Healthcom).
IEEE, Dalian, 1–6. https://doi.org/10.1109/HealthCom.2017.8210784

[16] Chen Lin and Min Chi. 2017. A Comparisons of BKT, RNN and LSTM for
Learning Gain Prediction. In Artificial Intelligence in Education, Elisabeth André,
Ryan Baker, Xiangen Hu, Ma. Mercedes T. Rodrigo, and Benedict du Boulay
(Eds.). Vol. 10331. Springer International Publishing, Cham, 536–539. https:
//doi.org/10.1007/978-3-319-61425-0_58 Series Title: Lecture Notes in Computer
Science.

[17] Zachary C. Lipton. 2017. The Mythos of Model Interpretability. arXiv:1606.03490
[cs, stat] (March 2017). http://arxiv.org/abs/1606.03490 arXiv: 1606.03490.

[18] Scott Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model
Predictions. arXiv:1705.07874 [cs, stat] (Nov. 2017). http://arxiv.org/abs/1705.
07874 arXiv: 1705.07874.

[19] Pavan Rajkumar Magesh, Richard Delwin Myloth, and Rijo Jackson Tom. 2020.
An Explainable Machine Learning Model for Early Detection of Parkinson’s
Disease using LIME on DaTSCAN Imagery. Computers in Biology and Medicine
126 (Nov. 2020), 104041. https://doi.org/10.1016/j.compbiomed.2020.104041

[20] Tobias Mahlmann, Matthias Schubert, and Anders Drachen. 2016. Esports Ana-
lytics Through Encounter Detection. Boston.

[21] Ilya Makarov, Dmitry Savostyanov, Boris Litvyakov, and Dmitry I. Ignatov. 2018.
Predicting Winning Team and Probabilistic Ratings in “Dota 2” and “Counter-
Strike: Global Offensive” Video Games. In Analysis of Images, Social Networks
and Texts, Wil M.P. van der Aalst, Dmitry I. Ignatov, Michael Khachay, Sergei O.
Kuznetsov, Victor Lempitsky, Irina A. Lomazova, Natalia Loukachevitch, Amedeo
Napoli, Alexander Panchenko, Panos M. Pardalos, Andrey V. Savchenko, and
Stanley Wasserman (Eds.). Vol. 10716. Springer International Publishing, Cham,
183–196. https://doi.org/10.1007/978-3-319-73013-4_17 Series Title: Lecture
Notes in Computer Science.

[22] Xin Man and Ernest P. Chan. 2021. The Best Way to Select Features? Comparing
MDA, LIME, and SHAP. The Journal of Financial Data Science 3, 1 (Jan. 2021),
127–139. https://doi.org/10.3905/jfds.2020.1.047

[23] Stefan Marshall. 2022. Not so sudden death: Death prediction in CS:GO. Master’s
thesis. Tilburg University, Tilburg.

[24] Sidra Mehtab, Jaydip Sen, and Subhasis Dasgupta. 2020. Robust Analysis of
Stock Price Time Series Using CNN and LSTM-Based Deep Learning Models. In
2020 4th International Conference on Electronics, Communication and Aerospace
Technology (ICECA). IEEE, Coimbatore, India, 1481–1486. https://doi.org/10.
1109/ICECA49313.2020.9297652

[25] Newzoo. 2021. Global Esports & Live Streaming Market Report. Technical Re-
port. https://newzoo.com/insights/trend-reports/newzoos-global-esports-live-
streaming-market-report-2021-free-version

[26] David B. Nieborg. 2006. First Person Paradoxes: The Logic of War in Computer
Games. In Game Set and Match II. On Computer Games, Advanced Geometries and
Digital Technologies. 107–115.

[27] Keiron O’Shea and Ryan Nash. 2015. An Introduction to Convolutional Neural
Networks. arXiv:1511.08458 [cs] (Dec. 2015). http://arxiv.org/abs/1511.08458

http://arxiv.org/abs/2106.01782
http://arxiv.org/abs/2106.01782
https://parquet.apache.org/documentation/latest/
https://doi.org/10.1109/MEMSTECH53091.2021.9468078
https://doi.org/10.1109/MEMSTECH53091.2021.9468078
https://doi.org/10.1145/3102071.3102095
https://doi.org/10.1145/3102071.3102095
https://doi.org/10.1515/jisys-2020-0060
https://doi.org/10.1515/jisys-2020-0060
http://arxiv.org/abs/2012.00093
http://arxiv.org/abs/2012.00093
http://www.deeplearningbook.org
https://doi.org/10.3389/frai.2021.752558
https://doi.org/10.1016/j.smr.2017.07.011
https://doi.org/10.1016/j.smr.2017.07.011
https://www.hltv.org/
https://doi.org/10.1109/TG.2019.2948469
https://doi.org/10.1109/TG.2019.2948469
http://arxiv.org/abs/1711.06498
https://doi.org/10.1109/CIG.2019.8847997
https://doi.org/10.1109/IDAP.2018.8620899
https://doi.org/10.1109/HealthCom.2017.8210784
https://doi.org/10.1007/978-3-319-61425-0_58
https://doi.org/10.1007/978-3-319-61425-0_58
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874
https://doi.org/10.1016/j.compbiomed.2020.104041
https://doi.org/10.1007/978-3-319-73013-4_17
https://doi.org/10.3905/jfds.2020.1.047
https://doi.org/10.1109/ICECA49313.2020.9297652
https://doi.org/10.1109/ICECA49313.2020.9297652
https://newzoo.com/insights/trend-reports/newzoos-global-esports-live-streaming-market-report-2021-free-version
https://newzoo.com/insights/trend-reports/newzoos-global-esports-live-streaming-market-report-2021-free-version
http://arxiv.org/abs/1511.08458

FDG ’22, September 5–8, 2022, Athens, Greece Stefan Marshall, Paris Mavromoustakos Blom, and Pieter Spronck

arXiv: 1511.08458.
[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[29] Adam Rathbun. 2021. 7 Largest CS:GO Competitions In The World. https:
//geekinsider.com/7-largest-cs_go-competitions-in-the-world/

[30] Jeff Reback, Jbrockmendel, Wes McKinney, Joris Van Den Bossche, Tom
Augspurger, Phillip Cloud, SimonHawkins, Gfyoung,MatthewRoeschke, Sinhrks,
Adam Klein, Terji Petersen, Jeff Tratner, Chang She, William Ayd, Patrick Hoefler,
Shahar Naveh, Marc Garcia, Jeremy Schendel, Andy Hayden, Daniel Saxton, JHM
Darbyshire, Richard Shadrach, Marco Edward Gorelli, Fangchen Li, Matthew
Zeitlin, Vytautas Jancauskas, Ali McMaster, Pietro Battiston, and Skipper Seabold.
2021. pandas-dev/pandas: Pandas 1.3.4. https://doi.org/10.5281/ZENODO.
3509134

[31] Steffen Rendle. 2010. Factorization Machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, Sydney, Australia, 995–1000. https://doi.org/10.1109/
ICDM.2010.127

[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. arXiv:1602.04938 [cs,
stat] (Aug. 2016). http://arxiv.org/abs/1602.04938 arXiv: 1602.04938.

[33] M. Nazhif Rizani and Hiroyuki Iida. 2018. Analysis of Counter-Strike: Global
Offensive. In 2018 International Conference on Electrical Engineering and Com-
puter Science (ICECOS). IEEE, Pangkal Pinang, 373–378. https://doi.org/10.1109/
ICECOS.2018.8605213

[34] Sreelekshmy Selvin, R Vinayakumar, E. A Gopalakrishnan, Vijay Krishna Menon,
and K. P. Soman. 2017. Stock price prediction using LSTM, RNN and CNN-
sliding windowmodel. In 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI). IEEE, Udupi, 1643–1647. https://doi.
org/10.1109/ICACCI.2017.8126078

[35] Aleksandr Semenov, Peter Romov, Sergey Korolev, Daniil Yashkov, and Kirill
Neklyudov. 2017. Performance of Machine Learning Algorithms in Predicting
Game Outcome from Drafts in Dota 2. In Analysis of Images, Social Networks
and Texts, Dmitry I. Ignatov, Mikhail Yu. Khachay, Valeri G. Labunets, Natalia
Loukachevitch, Sergey I. Nikolenko, Alexander Panchenko, Andrey V. Savchenko,
and Konstantin Vorontsov (Eds.). Vol. 661. Springer International Publishing,

Cham, 26–37. https://doi.org/10.1007/978-3-319-52920-2_3 Series Title: Com-
munications in Computer and Information Science.

[36] Antonio Luis Cardoso Silva, Gisele Lobo Pappa, and Luiz Chaimowicz. 2018.
Continuous Outcome Prediction of League of Legends Competitive Matches
Using Recurrent Neural Networks.

[37] Devesh Singh. 2021. Interpretable Machine-Learning Approach in Estimating
FDI Inflow: Visualization of ML Models with LIME and H2O. TalTech Journal of
European Studies 11, 1 (May 2021), 133–152. https://doi.org/10.2478/bjes-2021-
0009

[38] TensorFlow. 2021. TensorFlow. https://doi.org/10.5281/ZENODO.4724125
[39] Eric W. Weisstein. 2021. Convolution. https://mathworld.wolfram.com/

Convolution.html
[40] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and

Steve Young. 2015. Semantically Conditioned LSTM-based Natural Language
Generation for Spoken Dialogue Systems. arXiv:1508.01745 [cs] (Aug. 2015).
http://arxiv.org/abs/1508.01745 arXiv: 1508.01745.

[41] Wikipedia. 2021. Counter-Strike: Global Offensive. https://en.wikipedia.org/
wiki/Counter-Strike:_Global_Offensive

[42] Peter Xenopoulos, Bruno Coelho, and Claudio Silva. 2021. Optimal Team Eco-
nomic Decisions in Counter-Strike. arXiv:2109.12990 [cs] (Sept. 2021). http:
//arxiv.org/abs/2109.12990 arXiv: 2109.12990.

[43] Peter Xenopoulos, Harish Doraiswamy, and Claudio Silva. 2020. Valuing Player
Actions in Counter-Strike: Global Offensive. In 2020 IEEE International Conference
on Big Data (Big Data). IEEE, Atlanta, GA, USA, 1283–1292. https://doi.org/10.
1109/BigData50022.2020.9378154

[44] Ning Xue, Isaac Triguero, Grazziela P. Figueredo, and Dario Landa-Silva. 2019.
Evolving Deep CNN-LSTMs for Inventory Time Series Prediction. In 2019 IEEE
Congress on Evolutionary Computation (CEC). IEEE, Wellington, New Zealand,
1517–1524. https://doi.org/10.1109/CEC.2019.8789957

[45] Sergey Yakimenko. 2021. The growth in popularity of CS:GO since 2019. https:
//escharts.com/blog/growth-popularity-csgo-one-and-half-years

[46] Melvyn Yap, Rebecca L. Johnston, Helena Foley, Samual MacDonald, Olga Kon-
drashova, Khoa A. Tran, Katia Nones, Lambros T. Koufariotis, Cameron Bean,
John V. Pearson, Maciej Trzaskowski, and Nicola Waddell. 2021. Verifying ex-
plainability of a deep learning tissue classifier trained on RNA-seq data. Scientific
Reports 11, 1 (Dec. 2021), 2641. https://doi.org/10.1038/s41598-021-81773-9

https://geekinsider.com/7-largest-cs_go-competitions-in-the-world/
https://geekinsider.com/7-largest-cs_go-competitions-in-the-world/
https://doi.org/10.5281/ZENODO.3509134
https://doi.org/10.5281/ZENODO.3509134
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1109/ICDM.2010.127
http://arxiv.org/abs/1602.04938
https://doi.org/10.1109/ICECOS.2018.8605213
https://doi.org/10.1109/ICECOS.2018.8605213
https://doi.org/10.1109/ICACCI.2017.8126078
https://doi.org/10.1109/ICACCI.2017.8126078
https://doi.org/10.1007/978-3-319-52920-2_3
https://doi.org/10.2478/bjes-2021-0009
https://doi.org/10.2478/bjes-2021-0009
https://doi.org/10.5281/ZENODO.4724125
https://mathworld.wolfram.com/Convolution.html
https://mathworld.wolfram.com/Convolution.html
http://arxiv.org/abs/1508.01745
https://en.wikipedia.org/wiki/Counter-Strike:_Global_Offensive
https://en.wikipedia.org/wiki/Counter-Strike:_Global_Offensive
http://arxiv.org/abs/2109.12990
http://arxiv.org/abs/2109.12990
https://doi.org/10.1109/BigData50022.2020.9378154
https://doi.org/10.1109/BigData50022.2020.9378154
https://doi.org/10.1109/CEC.2019.8789957
https://escharts.com/blog/growth-popularity-csgo-one-and-half-years
https://escharts.com/blog/growth-popularity-csgo-one-and-half-years
https://doi.org/10.1038/s41598-021-81773-9

	Abstract
	1 Introduction
	2 Related Work
	2.1 Esports analytics and result prediction
	2.2 Micropredictions
	2.3 Deep learning model interpretability

	3 Experiment
	3.1 Counter-Strike: Global Offensive
	3.2 Dataset collection and preprocessing
	3.3 Feature extraction and engineering
	3.4 Neural network implementation
	3.5 Hyperparameter tuning
	3.6 Network architecture
	3.7 Evaluation methods
	3.8 Interpretation frameworks

	4 Results
	4.1 Neural network performances
	4.2 Model interpretation

	5 Discussion
	5.1 Key findings
	5.2 Limitations

	6 Conclusion
	References

