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ABSTRACT 
Game AI is defined as the decision-making process of computer-
controlled opponents in computer games. Adaptive game AI can 
improve the entertainment provided by computer games, by 
allowing the computer-controlled opponents to fix automatically 
weaknesses in the game AI, and to respond to changes in human-
player tactics online, i.e., during gameplay. Successful adaptive 
game AI is based invariably on domain knowledge of the game it is 
used in. Dynamic scripting is an algorithm that implements 
adaptive game AI. The domain knowledge used by dynamic 
scripting is stored in a rulebase with manually designed rules. In 
this paper we propose the use of an offline evolutionary algorithm 
to enhance the performance of adaptive game AI, by evolving new 
domain knowledge. We empirically validate our proposal, using 
dynamic scripting as adaptive game AI in a real-time-strategy 
(RTS) game, in three steps: (1) we implement and test dynamic 
scripting in an RTS game; (2) we use an offline evolutionary 
algorithm to evolve new tactics that are able to deal with optimised 
tactics, which dynamic scripting cannot defeat using its original 
rulebase; (3) we translate the evolved tactics to rules in the 
rulebase, and test dynamic scripting with the revised rulebase. The 
empirical validation shows that the revised rulebase yields a 
significantly improved performance of dynamic scripting compared 
to the original rulebase. We therefore conclude that offline 
evolutionary learning can be used to improve the performance of 
adaptive game AI. 
 
INTRODUCTION 
Traditionally, commercial game developers spend most of 
their resources on improving a game’s graphics. However, in 
recent years, game developers have begun to compete with 
each other by providing a more challenging gaming 
experience (Rabin 2004). For most games, challenging 
gameplay is equivalent to having high-quality game AI 
(Laird 2000). Game AI is defined as the decision-making 
process of computer-controlled opponents. Even in state-of-
the-art games, game AI is, in general, of inferior quality 
(Schaeffer 2001, Laird 2001, Gold 2004). It tends to be 
predictable, and often contains weaknesses that human 
players can exploit. 
    Adaptive game AI, which implies the online (i.e., during 
gameplay) adaptation of the behaviour of computer-
controlled opponents, has the potential to increase the 
quality of game AI. It has been widely disregarded by game 
developers, because online learning tends to be slow, and 
can lead to undesired behaviour (Manslow 2002). However, 
academic game AI researchers have shown that successful 
adaptive game AI is feasible (Demasi and Cruz 2002, 

Johnson 2004, Spronck, Sprinkhuizen-Kuyper and Postma 
2004a). 
    To ensure the efficiency and reliability of adaptive game 
AI, it must incorporate a great amount of prior domain 
knowledge (Manslow 2002, Spronck, Sprinkhuizen-Kuyper 
and Postma 2004b). However, if the incorporated domain 
knowledge is incorrect or insufficient, adaptive game AI will 
not be able to generate satisfying results. In this paper we 
propose an evolutionary algorithm to improve the quality of 
the domain knowledge used by adaptive game AI. We 
empirically validate our proposal by testing it on an adaptive 
game AI technique called “dynamic scripting”, used in a 
real-time strategy (RTS) game. 
    The outline of the remainder of the paper is as follows. 
First, we discuss RTS games, and the game environment 
selected for the experiments. Then, we discuss the 
implementation of dynamic scripting for RTS games, 
followed by a discussion of the implementation of an 
evolutionary algorithm that generates successful tactics for 
RTS games. The achieved results are used to show how the 
tactics discovered with an evolutionary algorithm can be 
employed to improve the original dynamic scripting 
implementation. Finally, we draw conclusions and indicate 
future work. 
 
REAL-TIME-STRATEGY GAMES 
RTS games are simple military simulations (war games) that 
require the player to control armies (consisting of different 
types of units), and defeat all opposing forces. In most RTS 
games, the key to winning lies in efficiently collecting and 
managing resources, and appropriately distributing these 
resources over the various game elements. Typical game 
elements in RTS games include the construction of 
buildings, the research of new technologies, and combat.  
    Game AI in RTS games determines the tactics of the 
armies controlled by the computer, including the 
management of resources. Game AI in RTS games is 
particularly challenging for game developers, because of two 
reasons: (1) RTS games are complex, i.e., a wide variety of 
tactics can be employed, and (2) decisions have to be made 
in real-time, i.e., under severe time constraints. RTS games 
have been called “an ideal test-bed for real-time AI research” 
(Buro 2003).  
    For our experiments, we selected the RTS game WARGUS, 
with STRATAGUS as its underlying engine. STRATAGUS is an 
open-source engine for building RTS games. WARGUS 
implements a clone of the highly popular RTS game 
WARCRAFT II. While the graphics of WARGUS are not up-to-
date with today’s standards, its gameplay can still be 
considered state-of-the-art. Figure 1 illustrates WARGUS. The 
figure shows a battle between an army of “orcs”, which 



 
Figure 1: Screenshot of a battle in WARGUS. 

approach from the bottom right, and an army of “humans”, 
which attempt to defend a base consisting of several 
buildings. 

 
ADAPTIVE GAME AI IN RTS GAMES 
Game AI for complex games, such as RTS games, is mostly 
defined in scripts, i.e., lists of rules that are executed 
sequentially (Tozour 2002). Because the scripts tend to be 
long and complex (Brockington and Darrah 2002), they are 
likely to contain weaknesses, which the human player can 
exploit. Because scripts are static they cannot adapt to 
overcome these exploits. Spronck et al. (2004a) designed a 
novel technique called “dynamic scripting” that realises the 
online adaptation of scripted opponent AI. Experiments have 
shown that the dynamic scripting technique can be 
successfully incorporated in commercial Computer 
RolePlaying Games (CRPGs) (Spronck et al. 2004a, 2004b).  
    Because the game AI for WARGUS is defined in scripts, 
dynamic scripting should also be applicable to WARGUS. 
However, because of the differences between RTS games 
and CRPGs, the original dynamic scripting implementation 
cannot be transferred to RTS games unchanged. In this 
section a dynamic scripting implementation for the game AI 
in RTS games is designed and evaluated. The basics of 
dynamic scripting are explained first. Then, we highlight the 
changes made to dynamic scripting to apply it to RTS 
games, and discuss the implementation of dynamic scripting 
in WARGUS. The implementation is evaluated, and the 
evaluation results are discussed. 
 
Dynamic Scripting 
Dynamic scripting is an online learning technique for 
commercial computer games, inspired by reinforcement 
learning (Russel and Norvig 1995). Dynamic scripting 
generates scripted opponents on the fly by extracting rules 
from an adaptive rulebase. The rules in the rulebase are 
manually designed using domain-specific knowledge. The 

probability that a rule is selected for a script is proportional 
to a weight value that is associated with each rule, i.e., rules 
with larger weights have a higher probability of being 
selected. After every encounter between opponents, the 
weights of rules employed during gameplay are increased 
when having a positive contribution to the outcome, and 
decreased when having a negative contribution. The size of 
the weight changes is determined by a weight-update 
function. To keep the sum of all weight values in a rulebase 
constant, weight changes are executed through a 
redistribution of all weights in the rulebase. Through the 
process of punishments and rewards, dynamic scripting 
gradually adapts to the human player. For CRPGs, it has 
been shown that dynamic scripting is fast, effective, robust 
and efficient (Spronck et al. 2004a). 
 
Dynamic Scripting for RTS games 
Our design of dynamic scripting for RTS games has two 
differences with dynamic scripting for CRPGs. The first 
difference is that, while dynamic scripting for CRPGs 
employs different rulebases for different opponent types in 
the game (Spronck et al. 2004a), our RTS implementation of 
dynamic scripting employs different rulebases for the 
different states of the game. The reason for this deviation 
from the CRPG implementation of dynamic scripting is that, 
in contrast with CRPGs, the tactics that can be used in an 
RTS game mainly depend on the availability of different unit 
types and technologies. For instance, attacking with weak 
units might be the only viable choice in early game states, 
while in later game states, when strong units are available, 
usually weak units will have become useless. 
    The second difference is that, while dynamic scripting for 
CRPGs executes weight updates based on an evaluation of a 
fight, our RTS implementation of dynamic scripting 
executes weight updates based on both an evaluation of the 
performance of the game AI during the whole game (called 
the “overall fitness”), and on an evaluation of the 
performance of the game AI between state changes (called 



the “state fitness”). As such, the weight-update function is 
based on the state fitness, combined with the overall fitness. 
The use of both evaluations for the weight-updates increases 
the efficiency of the learning mechanism (Manslow 2004). 
 
Dynamic Scripting in WARGUS 
We implemented the dynamic scripting process in WARGUS 
as follows. Dynamic scripting starts by randomly selecting 
rules for the first state. When a rule is selected that spawns a 
state change, from that point on rules will be selected for the 
new state. To avoid monotone behaviour, we restricted each 
rule to be selected only once for each state. At the end of the 
scripts, a loop is implemented that initiates continuous 
attacks against the enemy.  
    Because in WARGUS the available buildings determine the 
unit types that can be built and technologies that can be 
researched, we decided to distinguish game states according 
to the type of buildings possessed. Consequently, state 

changes are spawned by rules that comprise the creation of 
new buildings. The twenty states for WARGUS, and the 
possible state changes, are illustrated in Figure 2. 
    We allowed a maximum of 100 rules per script. The 
rulebases for each of the states contained between 21 and 42 
rules. The rules can be divided in four basic categories: (1) 
build rules (for constructing buildings), (2) research rules 
(for acquiring new technologies), (3) economy rules (for 
gathering resources), and (4) combat rules (for military 
activities). To design the rules, we incorporated domain 
knowledge acquired from strategy guides for WARCRAFT II. 
    The ‘overall fitness’ function F for player d controlled by 
dynamic scripting (henceforth called the “dynamic player”) 
yields a value in the range [0,1]. It is defined as:  
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Figure 2: Game states in WARGUS. 
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In equation (1), Sd represents the score for the dynamic 
player, So represents the score for the dynamic player’s 
opponent, and b∈[0,1] is the break-even point. At the break-
even point, weights remain unchanged. 
    For the dynamic player, the state fitness Fi for state i is 
defined as: 
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In equation (2), Sd,x represents the score of the dynamic 
player after state x, and So,x represents the score of the 
dynamic player’s opponent after state x. 
    The score function is domain-dependent, and should 
successfully reflect the relative strength of the two opposing 
players in the game. For WARGUS, we defined the score Sx 
for player x as: 
 

xxx BMS 3.07.0 +=                         (3) 
 
In equation (3), Mx represents the military points for player 
x, i.e. the number of points awarded for killing units and 
destruction of buildings, and Bx represents the building 
points for player x, i.e. the number of points awarded for 
training armies and constructing buildings. 
    After each game, the weights of all rules employed are 
updated. The weight-update function translates the fitness 
functions into weight adaptations for the rules in the script. 
The weight-update function W for the dynamic player is 
defined as:  
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In equation (4), W is the new weight value, Worg is the 
original weight value, P is the maximum penalty, R is the 
maximum reward, Wmax is the maximum weight value, Wmin 
is the minimum weight value, F is the overall fitness of the 
dynamic player, Fi is the state fitness for the dynamic player 
in state i, and b is the break-even point. The equation 
indicates that we prioritise state performance over overall 
performance. The reason is that, even if a game is lost, we 
wish to prevent rules from being punished (too much) in 
states where performance is successful. In our simulation we 
set P to 175, R to 200, Wmax to 1250, Wmin to 25 and b to 0.5. 
 
Evaluating Dynamic Scripting in WARGUS 
We evaluated the performance of dynamic scripting for RTS 
games in WARGUS, by letting the computer play the game 
against itself. One of the two opposing players was 
controlled by dynamic scripting (the dynamic player), and 
the other was controlled by a static script (the static player). 
Each game lasted until one of the players was defeated, or 
until a certain period of time had elapsed. If the game ended 
due to the time restriction (which was rarely the case), the 
player with the highest score was considered to have won. 
After the game, the rulebases were adapted, and the next 
game was started, using the adapted rulebases. A sequence 
of 100 games constituted one test. We tested four different 
tactics for the static player: 
 
1. Small Balanced Land Attack (SBLA): The SBLA is a 

tactic that focuses on land combat, keeping a balance 
between offensive actions, defensive actions, and 
research. The SBLA is applied on a small map. Games 
on a small map are usually decided swiftly, with fierce 
battles between weak armies. 

2. Large Balanced Land Attack (LBLA): The LBLA is 
similar to the SBLA, but applied on a large map. A 
large map allows for a slower-paced game, with long-
lasting battles between strong armies. 

3. Soldier’s Rush (SR): The soldier’s rush aims at 
overwhelming the opponent with cheap offensive units 
in an early state of the game. Since the soldier’s rush 
works best in fast games, we tested it on a small map. 

4. Knight’s Rush (KR): The knight’s rush aims at quick 
technological advancement, launching large offences as 
soon as strong units are available. Since the knight’s 
rush works best in slower-paced games, we tested it on 
a large map.  

 
    To quantify the relative performance of the dynamic 
player against the static player, we used the ‘randomization 
turning point’ (RTP). The RTP is measured as follows. After 
each game, a randomization test (Cohen 1995; pp. 168–170) 
is performed using the fitness values over the last ten games, 
with the null hypothesis that both players are equally strong. 
The dynamic player is said to outperform the static player if 
the randomization test concludes that the null hypothesis can 
be rejected with 90% probability in favour of the dynamic 
player. The RTP is the number of the first game in which the 
dynamic player outperforms the static player. A low value 
for the RTP indicates good efficiency of dynamic scripting.  
    If the player controlled by dynamic scripting is unable to 
statistically outperform the static player within 100 games, 

the test is aborted. For the SBLA we ran 31 tests. For the 
LBLA we ran 21 tests. For both the SR and KR, we ran 10 
tests. 
 
Results 
The results of the evaluation of dynamic scripting in 
WARGUS are displayed in Table 1. From left to right, the 
table displays (1) the tactic used by the static player, (2) the 
number of tests, (3) the lowest RTP found, (4) the highest 
RTP found, (5) the average RTP, (6) the median RTP, (7) 
the number of tests that did not find an RTP within 100 
games, and (8) the average number of games won out of 
100.  
 
Tactic Tests Low High Avg Med >100 Won 
SBLA 31 18 99 50 39 0 59.3 
LBLA 21 19 79 49 47 0 60.2 

SR 10     10 1.2 
KR 10     10 2.3 

 

Table 1: Evaluation results of dynamic scripting in RTS games. 
 
    From the low values for the RTPs for both the SBLA and 
the LBLA, we can conclude that the dynamic player 
efficiently adapts to these two tactics. Therefore, we 
conclude that dynamic scripting in our implementation can 
be applied successfully to RTS games.  
    However, the dynamic player was unable to adapt to the 
soldier’s rush and the knight’s rush within 100 games. As 
the rightmost column in Table 1 shows, the dynamic player 
only won approximately 1 out of 100 games against the 
soldier’s rush, and 1 out of 50 games against the knight’s 
rush. The reason for the inferior performance of the dynamic 
player against the two rush tactics is twofold, namely (1) the 
rush tactics are optimised, in the sense that it is very hard to 
design game AI that is able to deal with them, and (2) the 
rulebase does not contain the appropriate knowledge to 
easily design game AI that is able to deal with the rush 
tactics.  
    The remainder of this paper investigates how offline 
evolutionary learning can be used to improve the rulebase to 
deal with optimised tactics. 
 
EVOLUTIONARY TACTICS 
In this section we empirically investigate to what extent an 
evolutionary algorithm can be used to search for effective 
tactics for RTS games. Our goal is to use offline 
evolutionary learning to design tactics that can be used to 
defeat the two optimised tactics described in the previous 
section, the soldier’s rush and the knight’s rush. In the 
following subsections we describe the procedure used, the 
encoding of the chromosome, the fitness function, the 
genetic operators, and the achieved results. 
 
Experimental Procedure 
We designed an evolutionary algorithm that evolves new 
tactics to be used in WARGUS against a static player using 
the soldier’s rush and the knight’s rush tactics. The 
evolutionary algorithm uses a population of size 50, 
representing sample solutions (i.e., game AI scripts). 
Relatively successful solutions (as determined by a fitness 
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Figure 3: Design of a chromosome to store game AI for WARGUS. 

function) are allowed to breed. To select parent 
chromosomes for breeding, we used size-3 tournament 
selection (Buckland 2004). This method prevents early 
convergence and is computationally fast. Newly generated 
chromosomes replace existing solutions in the population, 
using size-3 crowding (Goldberg 1989).  
    Our goal is to generate a chromosome with a fitness 
exceeding a target value. When such a chromosome is 
found, the evolution process ends. This is the fitness-stop 
criterion. We set the target value to 0.75 against the soldier’s 
rush, and to 0.7 against the knight’s rush. Since there is no 
guarantee that a solution exceeding the target value will be 
found, the evolution process also ends after it has generated 
a maximum number of solutions. This is the run-stop 
criterion. We set the maximum number of solutions to 250. 
The choices for the fitness-stop and run-stop criteria were 
determined during preliminary experiments. 
 
Encoding 
The evolutionary algorithm works with a population of 
chromosomes. In the present context, a chromosome 
represents a game-AI script. To encode a game-AI script for 
WARGUS, each gene in the chromosome represents one rule. 
Four different gene types are distinguished, corresponding to 
the four basic rule categories mentioned in the previous 
section, namely (1) build genes, (2) research genes, (3) 
economy genes, and (4) combat genes. Each gene consists of 
a rule ID that indicates the type of gene (B, R, E and C, 
respectively), followed by values for the parameters needed 
by the gene. Of the combat gene, there are actually twenty 
variations, one for each possible state, each with its own 
parameters. The genes are grouped by states. A separate 
marker (S), followed by the state number, indicates the start 
of a state. 
    The chromosome design is illustrated in Figure 3. A 
schematic representation of the chromosome, divided into 
states, is shown at the top. Below it, a schematic 
representation of one state in the chromosome is shown, 
consisting of a state marker and a series of rule genes. Rule 
genes are identified by the number of the state for which 
they occur, followed by a period, followed by a sequence 
number. Below the state representation, a schematic 
representation of one rule is shown. At the bottom, part of an 
example chromosome is shown. Chromosomes for the initial 
population are generated randomly.  

    By taking into account state changes spawned by build 
genes, it is ensured that only legal game AI scripts are 
created. A more detailed description of the chromosome 
design can be found in (Ponsen 2004). 
 
Fitness Function 

To measure the success of a game AI script represented by a 
chromosome, the following fitness function F for the 
dynamic player d, yielding a value in the range [0,1], is 
defined: 
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In equation (5), Md represents the military points for the 
dynamic player, Mo represents the military points for the 
dynamic player’s opponent, and b is the break-even point. 
GC represents the game cycle, i.e., the time it took before the 
game is lost by one of the players. EC represents the end 
cycle, i.e. the longest time a game is allowed to continue. 
When a game reaches the end cycle and neither army has 
been completely defeated, scores at that time are measured 
and the game is aborted. The factor GC/EC ensures that 
losing solutions that play a long game are awarded higher 
fitness scores than losing solutions that play a short game.  
 
Genetic Operators 

To breed new chromosomes, four genetic operators were 
implemented. By design, all four genetic operators ensure 
that a child chromosome always represents a legal game-AI 
script. Parent chromosomes are selected with a chance 
corresponding to their fitness values. 
    The genetic operators take into account “activated” genes. 
An activated gene is a gene that represents a rule that was 
executed during the fitness determination. Non-activated 
genes can be considered irrelevant to the game-AI script the 
chromosome represents. If a genetic operator produces a 
child chromosome that is equal to a parent chromosome for 
all activated genes, the child is rejected and a new child is 
generated.  
  



1. State Crossover selects two parents, and copies states 
from either parent to the child chromosome. State 
crossover is controlled by “matching states”. A 
matching state is a state that exists in both parent 
chromosomes. Figure 2 makes evident that, for 
WARGUS, there are always at least four matching states, 
namely state 1, state 12, state 13, and state 20. State 
crossover will only be used when there are least three 
matching states with activated genes. A child 
chromosome is created as follows. States are copied 
from the first parent chromosome to the child 
chromosome, starting at state 1 and working down the 
chromosome. When there is a state change to a 
matching state, there is a 50% probability that from that 
point on, the role of the two parents is switched, and 
states are copied from the second parent. When the next 
state change to a matching state is encountered, again a 
switch between the parents can occur. This continues 
until the last state has been copied. 

2. Rule Replace Mutation selects one parent, and 
replaces economy, research or combat rules with a 25% 
probability. Building rules are excluded, both for and as 
replacement, because these could spawn a state change 
and thus could possibly corrupt the chromosome. 

3. Rule Biased Mutation selects one parent and mutates 
parameters for existing economy or combat rules with a 
50% chance. The mutations are executed by adding a 
random integer value in the range [–5,5]. 

4. Randomization generates a random new chromosome. 
 

Randomization had a 10% chance of being selected during 
evolution. The other genetic operators had a 30% chance. 
  
Results 

The results of ten tests of the evolutionary algorithm against 
each of the two optimised tactics are shown in Table 2. From 
left to right, the columns show (1) the tactic used by the 
static player, (2) the number of tests, (3) the lowest fitness 
value found, (4) the highest fitness value found, (5) the 
average fitness value, and (6) the number of tests that ended 
because of the run-stop criterion. 
 

Tactic Tests Low High Avg >250 
SR 10 0.73 0.85 0.78 2 
KR 10 0.71 0.84 0.75 0 

 

Table 2: Evolutionary algorithm results. 
 

The table shows surprisingly high average, highest, and even 
lowest solution-fitness values. Therefore, it may be 
concluded that offline adaptive game AI was successful in 
rapidly discovering game-AI scripts able to defeat both rush 
tactics used by the static player. 
 
IMPROVING ADAPTIVE AI  
In the first experiment, we discovered that our original 
implementation of dynamic scripting did not achieve 
satisfying results against the two rush tactics. In the previous 
section we evolved new tactics that were able to defeat the 
two rush tactics. In the present section we discuss how the 
evolved tactics can be used to improve the rulebases 
employed by dynamic scripting, to enable it to deal with the 

rush tactics with more success. First, we discuss 
observations on the evolved tactics. Then, we discuss the 
translation of the evolved tactics to rulebase improvements. 
Finally, we evaluate of the new rulebases by repeating the 
first experiment with the new rulebases. 
 
Observations on the Evolved Tactics 
About the solutions evolved against the soldier’s rush, the 
following observations were made. The soldier’s rush is 
used on a small map. As is usual for a small map, the game 
played by the solutions was always short. Most solutions 
included only two states with activated genes. Basically, we 
found that all ten solutions counter the soldier’s rush with a 
soldier’s rush of their own. In eight out of ten solutions, the 
solutions included building a “blacksmith” very early in the 
game, which allows the research of weapon and armour 
upgrades. Then, the solutions selected at least two out of the 
three possible research advancements, after which large 
attack forces were created. These eight solutions succeeded 
because they ensure their soldiers are quickly upgraded to be 
very effective, before they attack. The remaining two 
solutions overwhelmed the static player with sheer numbers. 
    About the solutions evolved against the knight’s rush, the 
following observations were made. The knight’s rush is used 
on a large map, which enticed longer games. On average, for 
each solution five or six states were activated. Against the 
knight’s rush, all solutions included training a large number 
of “workers” to be able to expand quickly. They also 
included boosting the economy by exploiting additional 
resource sites after setting up defences. 
    Almost all solutions evolved against the knight’s rush 
worked towards the goal of quickly creating advanced 
military units, in particular “knights”. Seven out of ten 
solutions achieved this goal by employing a specific building 
order, namely a “blacksmith”, followed by a “lumbermill”, 
followed by a “keep”, followed by “stables”. Two out of ten 
solutions preferred a building order that reached state 11 as 
quickly as possible (see Figure 2). State 11 is the first state 
that allows the building of knights. 
    Surprisingly, in several solutions against the knight’s rush, 
the game AI employed many “catapults”. WARCRAFT II 
strategy guides generally consider catapults to be inferior 
military units, because of their high costs and considerable 
vulnerability. A possible explanation for the successful use 
of catapults by the evolutionary game AI is that, with their 
high damaging abilities and large range, they are particularly 
effective against tightly packed armies, such as groups of 
knights.  
 
Improving the Rulebase for Dynamic Scripting 
Based on our observations we decided to create four new 
rules for the rulebases, and to (slightly) change the 
parameters for several existing combat rules.  
    The first new rule was designed to be able to deal with the 
soldier’s rush. The rule contained the pattern that was 
observed in most of the tactics evolved against the soldier’s 
rush, namely a combination of the building of a 
“blacksmith”, followed by the research of several upgrades, 
followed by the creation of a large offensive force. 
    The second rule was designed to be able to deal with the 
knight’s rush. Against the knight’s rush, almost all evolved 



solutions aimed at creating advanced military units quickly. 
The new rule checks whether it is possible to reach a state 
that allows the creation of advanced military units, by 
constructing one new building. If such is possible, the rule 
constructs that building, and creates an offensive force 
consisting of the advanced military units. 
    The third rule was aimed at boosting the economy by 
exploiting additional resource sites. The original rulebases 
contained a rule to this end, but this rule was invariably 
assigned a low weight. In the evolved solutions we 
discovered that exploitation of additional resource sites only 
occurred after a defensive force was built. The new rule 
acknowledged this by preparing the exploitation of 
additional resource sites with the building of a defensive 
army. 
    The fourth rule was a straightforward translation of the 
best solution found against the knight’s rush. Simply all 
activated genes for each state were translated and combined 
in one rule, and stored in the rulebase corresponding to the 
state. 
    To keep the total number of rules constant, the new rules 
replaced existing rules, namely rules that always ended up 
with low weights. Besides the creation of the four new rules, 
small changes were made to some of the existing combat 
rules, by changing the parameters to increase the number of 
units of types clearly preferred by the solutions, and to 
decrease the number of units of types avoided by the 
solutions. Through these changes, the use of “catapults” was 
encouraged. More details on the original and revised 
rulebases can be found in (Ponsen 2004). 
 
Evaluating the Improved Rule-base in Wargus 
We repeated the first experiment, but with dynamic scripting 
using the new rulebases, and with the values of the 
maximum reward and maximum penalty both set to 400, to 
allow dynamic scripting to reach the boundaries of the 
weight values faster. Table 3 summarises the achieved 
results. The columns in Table 3 are equal to those in Table 1.  
 
Tactic Tests Low High Avg Med >100 Won 
SBLA 11 10 34 19 14 0 72.5 
LBLA 11 10 61 24 26 0 66.4 

SR 10     10 27.5 
KR 10     10 10.1 

 
Table 3: Evaluation results of dynamic scripting in RTS games using 
improved rulebases. 
 
A comparison of Table 1 and Table 3 shows that the 
performance of dynamic scripting is considerably improved 
with the new rulebases. Against the two balanced tactics, 
SBLA and LBLA, the average RTP is reduced by more than 
50%. Against the two optimised tactics, the soldier’s rush 
and the knight’s rush, the number of games won out of 100 
has increased enormously. Since we observed that dynamic 
scripting assigned the new rules large weights, the improved 
performance can be attributed to the new rules. 
    Note that, despite the improvements, dynamic scripting is 
still unable to statistically outperform the two rush tactics. 
The explanation is as follows. The two rush tactics are 
‘super-tactics’, that can only be defeated by very specific 
counter-tactics, with little room for variation. By design, 

dynamic scripting generates a variety of tactics at all times, 
thus it is unlikely to make the appropriate choices enough 
times in a row to reach the RTP. A possible solution to this 
shortcoming of adaptive game AI, is to allow it to recognise 
that an optimised tactic is used, and then oppose it with a 
pre-programmed “answer” without activating a learning 
mechanism. Note, however, that since the existence of 
super-tactics can be considered a weakness of game design, 
a better solution would be to change the game design before 
the release of the game, to make super-tactics impossible. 
 
CONCLUSIONS 
We set out to show that offline evolutionary learning can be 
used to improve the performance of adaptive game AI, by 
improving the domain knowledge that is used by the 
adaptive game AI. We implemented an adaptive game AI 
technique called “dynamic scripting”, which uses domain 
knowledge stored in rulebases, in the RTS game WARGUS. 
We tested the implementation against four manually 
designed tactics. We observed that, while dynamic scripting 
was successful in defeating balanced tactics, it did not do 
well against two optimised rush tactics. We then used 
evolutionary learning to design tactics able to defeat the rush 
tactics. Finally, we used the evolved tactics to improve the 
rulebases of dynamic scripting. From our empirical results 
we were able to conclude that the new rulebases resulted in 
significantly improved performance of dynamic scripting 
against all four tactics. 
    We draw three conclusions from our experiments. (1) 
Dynamic scripting can be successfully implemented in RTS 
games. (2) Offline evolutionary learning can be used to 
successfully design counter-tactics against strong tactics 
used in an RTS game. (3) Tactics designed by offline 
evolutionary learning can be used to improve the domain 
knowledge used by adaptive game AI, and thus to improved 
performance of adaptive game AI. 
 
Future Work 
It can be argued that a game is entertaining when the game 
AI attempts matching the playing strength of the human 
player, instead of defeating the human player. In parallel 
research, techniques have been investigated that allow 
dynamic scripting to scale the difficulty level of the game AI 
to match the human player’s skill, instead of optimise it 
(Spronck, Sprinkhuizen-Kuyper and Postma 2004c). In 
future work we will add difficulty-scaling enhancements to 
dynamic scripting in RTS games. We will also test dynamic 
scripting in RTS games played against humans, to determine 
if adaptive game AI actually increases the entertainment 
value of a game.  
    In the present research, the translation of the evolved 
solutions to improvements in domain knowledge was done 
manually. Because the translation requires understanding 
and interpretation of the evolved solutions, it is difficult to 
perform the translation automatically. Nevertheless, in future 
work we will attempt to design an automated mechanism 
that translates tactics evolved by offline evolutionary 
learning into an improved rulebase for dynamic scripting. 
The addition of such a mechanism would enable us to 
completely automate the process of designing successful 
rulebases for dynamic scripting.  
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