
IMPROVING ADAPTIVE GAME AI WITH EVOLUTIONARY LEARNING

Marc Ponsen
Lehigh University / Computer Science & Engineering

19 Memorial Drive West
Bethlehem, PA 18015-3084 USA

mjp304@lehigh.edu

Pieter Spronck
Maastricht University / IKAT

P.O. Box 616, NL-6200 MD Maastricht,
The Netherlands

p.spronck@cs.unimaas.nl

KEYWORDS
Games, artificial intelligence, real-time strategy, dynamic
scripting, evolutionary algorithms.

ABSTRACT
Game AI is defined as the decision-making process of computer-
controlled opponents in computer games. Adaptive game AI can
improve the entertainment provided by computer games, by
allowing the computer-controlled opponents to fix automatically
weaknesses in the game AI, and to respond to changes in human-
player tactics online, i.e., during gameplay. Successful adaptive
game AI is based invariably on domain knowledge of the game it is
used in. Dynamic scripting is an algorithm that implements
adaptive game AI. The domain knowledge used by dynamic
scripting is stored in a rulebase with manually designed rules. In
this paper we propose the use of an offline evolutionary algorithm
to enhance the performance of adaptive game AI, by evolving new
domain knowledge. We empirically validate our proposal, using
dynamic scripting as adaptive game AI in a real-time-strategy
(RTS) game, in three steps: (1) we implement and test dynamic
scripting in an RTS game; (2) we use an offline evolutionary
algorithm to evolve new tactics that are able to deal with optimised
tactics, which dynamic scripting cannot defeat using its original
rulebase; (3) we translate the evolved tactics to rules in the
rulebase, and test dynamic scripting with the revised rulebase. The
empirical validation shows that the revised rulebase yields a
significantly improved performance of dynamic scripting compared
to the original rulebase. We therefore conclude that offline
evolutionary learning can be used to improve the performance of
adaptive game AI.

INTRODUCTION
Traditionally, commercial game developers spend most of
their resources on improving a game’s graphics. However, in
recent years, game developers have begun to compete with
each other by providing a more challenging gaming
experience (Rabin 2004). For most games, challenging
gameplay is equivalent to having high-quality game AI
(Laird 2000). Game AI is defined as the decision-making
process of computer-controlled opponents. Even in state-of-
the-art games, game AI is, in general, of inferior quality
(Schaeffer 2001, Laird 2001, Gold 2004). It tends to be
predictable, and often contains weaknesses that human
players can exploit.
 Adaptive game AI, which implies the online (i.e., during
gameplay) adaptation of the behaviour of computer-
controlled opponents, has the potential to increase the
quality of game AI. It has been widely disregarded by game
developers, because online learning tends to be slow, and
can lead to undesired behaviour (Manslow 2002). However,
academic game AI researchers have shown that successful
adaptive game AI is feasible (Demasi and Cruz 2002,

Johnson 2004, Spronck, Sprinkhuizen-Kuyper and Postma
2004a).
 To ensure the efficiency and reliability of adaptive game
AI, it must incorporate a great amount of prior domain
knowledge (Manslow 2002, Spronck, Sprinkhuizen-Kuyper
and Postma 2004b). However, if the incorporated domain
knowledge is incorrect or insufficient, adaptive game AI will
not be able to generate satisfying results. In this paper we
propose an evolutionary algorithm to improve the quality of
the domain knowledge used by adaptive game AI. We
empirically validate our proposal by testing it on an adaptive
game AI technique called “dynamic scripting”, used in a
real-time strategy (RTS) game.
 The outline of the remainder of the paper is as follows.
First, we discuss RTS games, and the game environment
selected for the experiments. Then, we discuss the
implementation of dynamic scripting for RTS games,
followed by a discussion of the implementation of an
evolutionary algorithm that generates successful tactics for
RTS games. The achieved results are used to show how the
tactics discovered with an evolutionary algorithm can be
employed to improve the original dynamic scripting
implementation. Finally, we draw conclusions and indicate
future work.

REAL-TIME-STRATEGY GAMES
RTS games are simple military simulations (war games) that
require the player to control armies (consisting of different
types of units), and defeat all opposing forces. In most RTS
games, the key to winning lies in efficiently collecting and
managing resources, and appropriately distributing these
resources over the various game elements. Typical game
elements in RTS games include the construction of
buildings, the research of new technologies, and combat.
 Game AI in RTS games determines the tactics of the
armies controlled by the computer, including the
management of resources. Game AI in RTS games is
particularly challenging for game developers, because of two
reasons: (1) RTS games are complex, i.e., a wide variety of
tactics can be employed, and (2) decisions have to be made
in real-time, i.e., under severe time constraints. RTS games
have been called “an ideal test-bed for real-time AI research”
(Buro 2003).
 For our experiments, we selected the RTS game WARGUS,
with STRATAGUS as its underlying engine. STRATAGUS is an
open-source engine for building RTS games. WARGUS
implements a clone of the highly popular RTS game
WARCRAFT II. While the graphics of WARGUS are not up-to-
date with today’s standards, its gameplay can still be
considered state-of-the-art. Figure 1 illustrates WARGUS. The
figure shows a battle between an army of “orcs”, which

Figure 1: Screenshot of a battle in WARGUS.

approach from the bottom right, and an army of “humans”,
which attempt to defend a base consisting of several
buildings.

ADAPTIVE GAME AI IN RTS GAMES
Game AI for complex games, such as RTS games, is mostly
defined in scripts, i.e., lists of rules that are executed
sequentially (Tozour 2002). Because the scripts tend to be
long and complex (Brockington and Darrah 2002), they are
likely to contain weaknesses, which the human player can
exploit. Because scripts are static they cannot adapt to
overcome these exploits. Spronck et al. (2004a) designed a
novel technique called “dynamic scripting” that realises the
online adaptation of scripted opponent AI. Experiments have
shown that the dynamic scripting technique can be
successfully incorporated in commercial Computer
RolePlaying Games (CRPGs) (Spronck et al. 2004a, 2004b).
 Because the game AI for WARGUS is defined in scripts,
dynamic scripting should also be applicable to WARGUS.
However, because of the differences between RTS games
and CRPGs, the original dynamic scripting implementation
cannot be transferred to RTS games unchanged. In this
section a dynamic scripting implementation for the game AI
in RTS games is designed and evaluated. The basics of
dynamic scripting are explained first. Then, we highlight the
changes made to dynamic scripting to apply it to RTS
games, and discuss the implementation of dynamic scripting
in WARGUS. The implementation is evaluated, and the
evaluation results are discussed.

Dynamic Scripting
Dynamic scripting is an online learning technique for
commercial computer games, inspired by reinforcement
learning (Russel and Norvig 1995). Dynamic scripting
generates scripted opponents on the fly by extracting rules
from an adaptive rulebase. The rules in the rulebase are
manually designed using domain-specific knowledge. The

probability that a rule is selected for a script is proportional
to a weight value that is associated with each rule, i.e., rules
with larger weights have a higher probability of being
selected. After every encounter between opponents, the
weights of rules employed during gameplay are increased
when having a positive contribution to the outcome, and
decreased when having a negative contribution. The size of
the weight changes is determined by a weight-update
function. To keep the sum of all weight values in a rulebase
constant, weight changes are executed through a
redistribution of all weights in the rulebase. Through the
process of punishments and rewards, dynamic scripting
gradually adapts to the human player. For CRPGs, it has
been shown that dynamic scripting is fast, effective, robust
and efficient (Spronck et al. 2004a).

Dynamic Scripting for RTS games
Our design of dynamic scripting for RTS games has two
differences with dynamic scripting for CRPGs. The first
difference is that, while dynamic scripting for CRPGs
employs different rulebases for different opponent types in
the game (Spronck et al. 2004a), our RTS implementation of
dynamic scripting employs different rulebases for the
different states of the game. The reason for this deviation
from the CRPG implementation of dynamic scripting is that,
in contrast with CRPGs, the tactics that can be used in an
RTS game mainly depend on the availability of different unit
types and technologies. For instance, attacking with weak
units might be the only viable choice in early game states,
while in later game states, when strong units are available,
usually weak units will have become useless.
 The second difference is that, while dynamic scripting for
CRPGs executes weight updates based on an evaluation of a
fight, our RTS implementation of dynamic scripting
executes weight updates based on both an evaluation of the
performance of the game AI during the whole game (called
the “overall fitness”), and on an evaluation of the
performance of the game AI between state changes (called

the “state fitness”). As such, the weight-update function is
based on the state fitness, combined with the overall fitness.
The use of both evaluations for the weight-updates increases
the efficiency of the learning mechanism (Manslow 2004).

Dynamic Scripting in WARGUS
We implemented the dynamic scripting process in WARGUS
as follows. Dynamic scripting starts by randomly selecting
rules for the first state. When a rule is selected that spawns a
state change, from that point on rules will be selected for the
new state. To avoid monotone behaviour, we restricted each
rule to be selected only once for each state. At the end of the
scripts, a loop is implemented that initiates continuous
attacks against the enemy.
 Because in WARGUS the available buildings determine the
unit types that can be built and technologies that can be
researched, we decided to distinguish game states according
to the type of buildings possessed. Consequently, state

changes are spawned by rules that comprise the creation of
new buildings. The twenty states for WARGUS, and the
possible state changes, are illustrated in Figure 2.
 We allowed a maximum of 100 rules per script. The
rulebases for each of the states contained between 21 and 42
rules. The rules can be divided in four basic categories: (1)
build rules (for constructing buildings), (2) research rules
(for acquiring new technologies), (3) economy rules (for
gathering resources), and (4) combat rules (for military
activities). To design the rules, we incorporated domain
knowledge acquired from strategy guides for WARCRAFT II.
 The ‘overall fitness’ function F for player d controlled by
dynamic scripting (henceforth called the “dynamic player”)
yields a value in the range [0,1]. It is defined as:

{ }

{ }
⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+=
wond

SS
S

b

lostdb
SS

S

F

od

d

od

d

),max(

),min(
 (1)

Figure 2: Game states in WARGUS.

1
Th,Ba

2
Th,Ba,Lm

3
Th,Ba,Bs

4
Kp,Ba

6
Kp,Ba,Lm

5
Th,Ba,Lm,Bs

7
Kp,Ba,Bs

8
Kp,Ba,St

9
Kp,Ba,Lm,Bs

10
Kp,Ba,Lm,St

11
Kp,Ba,Bs,St

12
Kp,Ba,Lm,Bs,St

13
Ca,Ba,Lm,Bs,St

15
Ca,Ba,Lm,Bs,

St,Mt

14
Ca,Ba,Lm,Bs,

St,Ap

16
Ca,Ba,Lm,Bs,

St,Tm

18
Ca,Ba,Lm,Bs,

St,Ap,Tm

17
Ca,Ba,Lm,Bs,

St,Ap,Mt

19
Ca,Ba,Lm,Bs,

St,Mt,Tm

20
Ca,Ba,Lm,Bs,
St,Ap,Mt,Tm

Th
Ba
Lm
Bs
Kp
St
Ca
Ap
Mt
Tm

= Townhall
= Barracks
= Lumbermill
= Blacksmith
= Keep
= Stables
= Castle
= Airport
= Magetower
= Temple

Lm Bs Kp

Bs
Kp Lm Kp Lm

Bs
St

Kp
Bs

St Lm St Lm
Bs

St Bs Lm

Ca

Ap Mt Tm

Mt
Tm Ap Tm Ap

Mt

Tm Mt Ap

In equation (1), Sd represents the score for the dynamic
player, So represents the score for the dynamic player’s
opponent, and b∈[0,1] is the break-even point. At the break-
even point, weights remain unchanged.
 For the dynamic player, the state fitness Fi for state i is
defined as:

{ }

{ }
⎪
⎪
⎩

⎪
⎪
⎨

⎧

>
+

−
+

=
+

=

−−

− 1

1

1,1,

1,

,,

,

,,

,

i
SS

S
SS

S

i
SS

S

F

ioid

id

ioid

id

ioid

id

i
 (2)

In equation (2), Sd,x represents the score of the dynamic
player after state x, and So,x represents the score of the
dynamic player’s opponent after state x.
 The score function is domain-dependent, and should
successfully reflect the relative strength of the two opposing
players in the game. For WARGUS, we defined the score Sx
for player x as:

xxx BMS 3.07.0 += (3)

In equation (3), Mx represents the military points for player
x, i.e. the number of points awarded for killing units and
destruction of buildings, and Bx represents the building
points for player x, i.e. the number of points awarded for
training armies and constructing buildings.
 After each game, the weights of all rules employed are
updated. The weight-update function translates the fitness
functions into weight adaptations for the rules in the script.
The weight-update function W for the dynamic player is
defined as:

{ }

{ }
⎪
⎪
⎩

⎪⎪
⎨

⎧

≥⎟
⎠
⎞

⎜
⎝
⎛

−
−

+
−
−

+

<⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

−
=

bFWR
b
bFR

b
bFW

bFP
b

FbP
b

FbWW
W

i
org

i
org

max

min

,
1

7.0
1

3.0min

7.03.0,max
 (4)

In equation (4), W is the new weight value, Worg is the
original weight value, P is the maximum penalty, R is the
maximum reward, Wmax is the maximum weight value, Wmin
is the minimum weight value, F is the overall fitness of the
dynamic player, Fi is the state fitness for the dynamic player
in state i, and b is the break-even point. The equation
indicates that we prioritise state performance over overall
performance. The reason is that, even if a game is lost, we
wish to prevent rules from being punished (too much) in
states where performance is successful. In our simulation we
set P to 175, R to 200, Wmax to 1250, Wmin to 25 and b to 0.5.

Evaluating Dynamic Scripting in WARGUS
We evaluated the performance of dynamic scripting for RTS
games in WARGUS, by letting the computer play the game
against itself. One of the two opposing players was
controlled by dynamic scripting (the dynamic player), and
the other was controlled by a static script (the static player).
Each game lasted until one of the players was defeated, or
until a certain period of time had elapsed. If the game ended
due to the time restriction (which was rarely the case), the
player with the highest score was considered to have won.
After the game, the rulebases were adapted, and the next
game was started, using the adapted rulebases. A sequence
of 100 games constituted one test. We tested four different
tactics for the static player:

1. Small Balanced Land Attack (SBLA): The SBLA is a

tactic that focuses on land combat, keeping a balance
between offensive actions, defensive actions, and
research. The SBLA is applied on a small map. Games
on a small map are usually decided swiftly, with fierce
battles between weak armies.

2. Large Balanced Land Attack (LBLA): The LBLA is
similar to the SBLA, but applied on a large map. A
large map allows for a slower-paced game, with long-
lasting battles between strong armies.

3. Soldier’s Rush (SR): The soldier’s rush aims at
overwhelming the opponent with cheap offensive units
in an early state of the game. Since the soldier’s rush
works best in fast games, we tested it on a small map.

4. Knight’s Rush (KR): The knight’s rush aims at quick
technological advancement, launching large offences as
soon as strong units are available. Since the knight’s
rush works best in slower-paced games, we tested it on
a large map.

 To quantify the relative performance of the dynamic
player against the static player, we used the ‘randomization
turning point’ (RTP). The RTP is measured as follows. After
each game, a randomization test (Cohen 1995; pp. 168–170)
is performed using the fitness values over the last ten games,
with the null hypothesis that both players are equally strong.
The dynamic player is said to outperform the static player if
the randomization test concludes that the null hypothesis can
be rejected with 90% probability in favour of the dynamic
player. The RTP is the number of the first game in which the
dynamic player outperforms the static player. A low value
for the RTP indicates good efficiency of dynamic scripting.
 If the player controlled by dynamic scripting is unable to
statistically outperform the static player within 100 games,

the test is aborted. For the SBLA we ran 31 tests. For the
LBLA we ran 21 tests. For both the SR and KR, we ran 10
tests.

Results
The results of the evaluation of dynamic scripting in
WARGUS are displayed in Table 1. From left to right, the
table displays (1) the tactic used by the static player, (2) the
number of tests, (3) the lowest RTP found, (4) the highest
RTP found, (5) the average RTP, (6) the median RTP, (7)
the number of tests that did not find an RTP within 100
games, and (8) the average number of games won out of
100.

Tactic Tests Low High Avg Med >100 Won
SBLA 31 18 99 50 39 0 59.3
LBLA 21 19 79 49 47 0 60.2

SR 10 10 1.2
KR 10 10 2.3

Table 1: Evaluation results of dynamic scripting in RTS games.

 From the low values for the RTPs for both the SBLA and
the LBLA, we can conclude that the dynamic player
efficiently adapts to these two tactics. Therefore, we
conclude that dynamic scripting in our implementation can
be applied successfully to RTS games.
 However, the dynamic player was unable to adapt to the
soldier’s rush and the knight’s rush within 100 games. As
the rightmost column in Table 1 shows, the dynamic player
only won approximately 1 out of 100 games against the
soldier’s rush, and 1 out of 50 games against the knight’s
rush. The reason for the inferior performance of the dynamic
player against the two rush tactics is twofold, namely (1) the
rush tactics are optimised, in the sense that it is very hard to
design game AI that is able to deal with them, and (2) the
rulebase does not contain the appropriate knowledge to
easily design game AI that is able to deal with the rush
tactics.
 The remainder of this paper investigates how offline
evolutionary learning can be used to improve the rulebase to
deal with optimised tactics.

EVOLUTIONARY TACTICS
In this section we empirically investigate to what extent an
evolutionary algorithm can be used to search for effective
tactics for RTS games. Our goal is to use offline
evolutionary learning to design tactics that can be used to
defeat the two optimised tactics described in the previous
section, the soldier’s rush and the knight’s rush. In the
following subsections we describe the procedure used, the
encoding of the chromosome, the fitness function, the
genetic operators, and the achieved results.

Experimental Procedure
We designed an evolutionary algorithm that evolves new
tactics to be used in WARGUS against a static player using
the soldier’s rush and the knight’s rush tactics. The
evolutionary algorithm uses a population of size 50,
representing sample solutions (i.e., game AI scripts).
Relatively successful solutions (as determined by a fitness

 Start State 1 State 2 End

State marker Rule x.1 Rule x.2 Rule x.n

State m⋅⋅⋅

⋅⋅⋅

Chromosome

State

Rule ID Parameter 1 Parameter p⋅⋅⋅Rule Parameter 2

Start S C1 ⋅⋅⋅2 5 def B S E 8 R 15 B 4 3 S

State number x

1 3 4

Rule 1.1 Rule 1.2 Rule 3.1 Rule 3.2 Rule 3.3

State 1 State 3

Figure 3: Design of a chromosome to store game AI for WARGUS.

function) are allowed to breed. To select parent
chromosomes for breeding, we used size-3 tournament
selection (Buckland 2004). This method prevents early
convergence and is computationally fast. Newly generated
chromosomes replace existing solutions in the population,
using size-3 crowding (Goldberg 1989).
 Our goal is to generate a chromosome with a fitness
exceeding a target value. When such a chromosome is
found, the evolution process ends. This is the fitness-stop
criterion. We set the target value to 0.75 against the soldier’s
rush, and to 0.7 against the knight’s rush. Since there is no
guarantee that a solution exceeding the target value will be
found, the evolution process also ends after it has generated
a maximum number of solutions. This is the run-stop
criterion. We set the maximum number of solutions to 250.
The choices for the fitness-stop and run-stop criteria were
determined during preliminary experiments.

Encoding
The evolutionary algorithm works with a population of
chromosomes. In the present context, a chromosome
represents a game-AI script. To encode a game-AI script for
WARGUS, each gene in the chromosome represents one rule.
Four different gene types are distinguished, corresponding to
the four basic rule categories mentioned in the previous
section, namely (1) build genes, (2) research genes, (3)
economy genes, and (4) combat genes. Each gene consists of
a rule ID that indicates the type of gene (B, R, E and C,
respectively), followed by values for the parameters needed
by the gene. Of the combat gene, there are actually twenty
variations, one for each possible state, each with its own
parameters. The genes are grouped by states. A separate
marker (S), followed by the state number, indicates the start
of a state.
 The chromosome design is illustrated in Figure 3. A
schematic representation of the chromosome, divided into
states, is shown at the top. Below it, a schematic
representation of one state in the chromosome is shown,
consisting of a state marker and a series of rule genes. Rule
genes are identified by the number of the state for which
they occur, followed by a period, followed by a sequence
number. Below the state representation, a schematic
representation of one rule is shown. At the bottom, part of an
example chromosome is shown. Chromosomes for the initial
population are generated randomly.

 By taking into account state changes spawned by build
genes, it is ensured that only legal game AI scripts are
created. A more detailed description of the chromosome
design can be found in (Ponsen 2004).

Fitness Function

To measure the success of a game AI script represented by a
chromosome, the following fitness function F for the
dynamic player d, yielding a value in the range [0,1], is
defined:

{ }

{ }
⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
=

wond
MM

M
b

lostdb
MM

M
EC
GC

F

od

d

od

d

,max

,min
 (5)

In equation (5), Md represents the military points for the
dynamic player, Mo represents the military points for the
dynamic player’s opponent, and b is the break-even point.
GC represents the game cycle, i.e., the time it took before the
game is lost by one of the players. EC represents the end
cycle, i.e. the longest time a game is allowed to continue.
When a game reaches the end cycle and neither army has
been completely defeated, scores at that time are measured
and the game is aborted. The factor GC/EC ensures that
losing solutions that play a long game are awarded higher
fitness scores than losing solutions that play a short game.

Genetic Operators

To breed new chromosomes, four genetic operators were
implemented. By design, all four genetic operators ensure
that a child chromosome always represents a legal game-AI
script. Parent chromosomes are selected with a chance
corresponding to their fitness values.
 The genetic operators take into account “activated” genes.
An activated gene is a gene that represents a rule that was
executed during the fitness determination. Non-activated
genes can be considered irrelevant to the game-AI script the
chromosome represents. If a genetic operator produces a
child chromosome that is equal to a parent chromosome for
all activated genes, the child is rejected and a new child is
generated.

1. State Crossover selects two parents, and copies states
from either parent to the child chromosome. State
crossover is controlled by “matching states”. A
matching state is a state that exists in both parent
chromosomes. Figure 2 makes evident that, for
WARGUS, there are always at least four matching states,
namely state 1, state 12, state 13, and state 20. State
crossover will only be used when there are least three
matching states with activated genes. A child
chromosome is created as follows. States are copied
from the first parent chromosome to the child
chromosome, starting at state 1 and working down the
chromosome. When there is a state change to a
matching state, there is a 50% probability that from that
point on, the role of the two parents is switched, and
states are copied from the second parent. When the next
state change to a matching state is encountered, again a
switch between the parents can occur. This continues
until the last state has been copied.

2. Rule Replace Mutation selects one parent, and
replaces economy, research or combat rules with a 25%
probability. Building rules are excluded, both for and as
replacement, because these could spawn a state change
and thus could possibly corrupt the chromosome.

3. Rule Biased Mutation selects one parent and mutates
parameters for existing economy or combat rules with a
50% chance. The mutations are executed by adding a
random integer value in the range [–5,5].

4. Randomization generates a random new chromosome.

Randomization had a 10% chance of being selected during
evolution. The other genetic operators had a 30% chance.

Results

The results of ten tests of the evolutionary algorithm against
each of the two optimised tactics are shown in Table 2. From
left to right, the columns show (1) the tactic used by the
static player, (2) the number of tests, (3) the lowest fitness
value found, (4) the highest fitness value found, (5) the
average fitness value, and (6) the number of tests that ended
because of the run-stop criterion.

Tactic Tests Low High Avg >250
SR 10 0.73 0.85 0.78 2
KR 10 0.71 0.84 0.75 0

Table 2: Evolutionary algorithm results.

The table shows surprisingly high average, highest, and even
lowest solution-fitness values. Therefore, it may be
concluded that offline adaptive game AI was successful in
rapidly discovering game-AI scripts able to defeat both rush
tactics used by the static player.

IMPROVING ADAPTIVE AI
In the first experiment, we discovered that our original
implementation of dynamic scripting did not achieve
satisfying results against the two rush tactics. In the previous
section we evolved new tactics that were able to defeat the
two rush tactics. In the present section we discuss how the
evolved tactics can be used to improve the rulebases
employed by dynamic scripting, to enable it to deal with the

rush tactics with more success. First, we discuss
observations on the evolved tactics. Then, we discuss the
translation of the evolved tactics to rulebase improvements.
Finally, we evaluate of the new rulebases by repeating the
first experiment with the new rulebases.

Observations on the Evolved Tactics
About the solutions evolved against the soldier’s rush, the
following observations were made. The soldier’s rush is
used on a small map. As is usual for a small map, the game
played by the solutions was always short. Most solutions
included only two states with activated genes. Basically, we
found that all ten solutions counter the soldier’s rush with a
soldier’s rush of their own. In eight out of ten solutions, the
solutions included building a “blacksmith” very early in the
game, which allows the research of weapon and armour
upgrades. Then, the solutions selected at least two out of the
three possible research advancements, after which large
attack forces were created. These eight solutions succeeded
because they ensure their soldiers are quickly upgraded to be
very effective, before they attack. The remaining two
solutions overwhelmed the static player with sheer numbers.
 About the solutions evolved against the knight’s rush, the
following observations were made. The knight’s rush is used
on a large map, which enticed longer games. On average, for
each solution five or six states were activated. Against the
knight’s rush, all solutions included training a large number
of “workers” to be able to expand quickly. They also
included boosting the economy by exploiting additional
resource sites after setting up defences.
 Almost all solutions evolved against the knight’s rush
worked towards the goal of quickly creating advanced
military units, in particular “knights”. Seven out of ten
solutions achieved this goal by employing a specific building
order, namely a “blacksmith”, followed by a “lumbermill”,
followed by a “keep”, followed by “stables”. Two out of ten
solutions preferred a building order that reached state 11 as
quickly as possible (see Figure 2). State 11 is the first state
that allows the building of knights.
 Surprisingly, in several solutions against the knight’s rush,
the game AI employed many “catapults”. WARCRAFT II
strategy guides generally consider catapults to be inferior
military units, because of their high costs and considerable
vulnerability. A possible explanation for the successful use
of catapults by the evolutionary game AI is that, with their
high damaging abilities and large range, they are particularly
effective against tightly packed armies, such as groups of
knights.

Improving the Rulebase for Dynamic Scripting
Based on our observations we decided to create four new
rules for the rulebases, and to (slightly) change the
parameters for several existing combat rules.
 The first new rule was designed to be able to deal with the
soldier’s rush. The rule contained the pattern that was
observed in most of the tactics evolved against the soldier’s
rush, namely a combination of the building of a
“blacksmith”, followed by the research of several upgrades,
followed by the creation of a large offensive force.
 The second rule was designed to be able to deal with the
knight’s rush. Against the knight’s rush, almost all evolved

solutions aimed at creating advanced military units quickly.
The new rule checks whether it is possible to reach a state
that allows the creation of advanced military units, by
constructing one new building. If such is possible, the rule
constructs that building, and creates an offensive force
consisting of the advanced military units.
 The third rule was aimed at boosting the economy by
exploiting additional resource sites. The original rulebases
contained a rule to this end, but this rule was invariably
assigned a low weight. In the evolved solutions we
discovered that exploitation of additional resource sites only
occurred after a defensive force was built. The new rule
acknowledged this by preparing the exploitation of
additional resource sites with the building of a defensive
army.
 The fourth rule was a straightforward translation of the
best solution found against the knight’s rush. Simply all
activated genes for each state were translated and combined
in one rule, and stored in the rulebase corresponding to the
state.
 To keep the total number of rules constant, the new rules
replaced existing rules, namely rules that always ended up
with low weights. Besides the creation of the four new rules,
small changes were made to some of the existing combat
rules, by changing the parameters to increase the number of
units of types clearly preferred by the solutions, and to
decrease the number of units of types avoided by the
solutions. Through these changes, the use of “catapults” was
encouraged. More details on the original and revised
rulebases can be found in (Ponsen 2004).

Evaluating the Improved Rule-base in Wargus
We repeated the first experiment, but with dynamic scripting
using the new rulebases, and with the values of the
maximum reward and maximum penalty both set to 400, to
allow dynamic scripting to reach the boundaries of the
weight values faster. Table 3 summarises the achieved
results. The columns in Table 3 are equal to those in Table 1.

Tactic Tests Low High Avg Med >100 Won
SBLA 11 10 34 19 14 0 72.5
LBLA 11 10 61 24 26 0 66.4

SR 10 10 27.5
KR 10 10 10.1

Table 3: Evaluation results of dynamic scripting in RTS games using
improved rulebases.

A comparison of Table 1 and Table 3 shows that the
performance of dynamic scripting is considerably improved
with the new rulebases. Against the two balanced tactics,
SBLA and LBLA, the average RTP is reduced by more than
50%. Against the two optimised tactics, the soldier’s rush
and the knight’s rush, the number of games won out of 100
has increased enormously. Since we observed that dynamic
scripting assigned the new rules large weights, the improved
performance can be attributed to the new rules.
 Note that, despite the improvements, dynamic scripting is
still unable to statistically outperform the two rush tactics.
The explanation is as follows. The two rush tactics are
‘super-tactics’, that can only be defeated by very specific
counter-tactics, with little room for variation. By design,

dynamic scripting generates a variety of tactics at all times,
thus it is unlikely to make the appropriate choices enough
times in a row to reach the RTP. A possible solution to this
shortcoming of adaptive game AI, is to allow it to recognise
that an optimised tactic is used, and then oppose it with a
pre-programmed “answer” without activating a learning
mechanism. Note, however, that since the existence of
super-tactics can be considered a weakness of game design,
a better solution would be to change the game design before
the release of the game, to make super-tactics impossible.

CONCLUSIONS
We set out to show that offline evolutionary learning can be
used to improve the performance of adaptive game AI, by
improving the domain knowledge that is used by the
adaptive game AI. We implemented an adaptive game AI
technique called “dynamic scripting”, which uses domain
knowledge stored in rulebases, in the RTS game WARGUS.
We tested the implementation against four manually
designed tactics. We observed that, while dynamic scripting
was successful in defeating balanced tactics, it did not do
well against two optimised rush tactics. We then used
evolutionary learning to design tactics able to defeat the rush
tactics. Finally, we used the evolved tactics to improve the
rulebases of dynamic scripting. From our empirical results
we were able to conclude that the new rulebases resulted in
significantly improved performance of dynamic scripting
against all four tactics.
 We draw three conclusions from our experiments. (1)
Dynamic scripting can be successfully implemented in RTS
games. (2) Offline evolutionary learning can be used to
successfully design counter-tactics against strong tactics
used in an RTS game. (3) Tactics designed by offline
evolutionary learning can be used to improve the domain
knowledge used by adaptive game AI, and thus to improved
performance of adaptive game AI.

Future Work
It can be argued that a game is entertaining when the game
AI attempts matching the playing strength of the human
player, instead of defeating the human player. In parallel
research, techniques have been investigated that allow
dynamic scripting to scale the difficulty level of the game AI
to match the human player’s skill, instead of optimise it
(Spronck, Sprinkhuizen-Kuyper and Postma 2004c). In
future work we will add difficulty-scaling enhancements to
dynamic scripting in RTS games. We will also test dynamic
scripting in RTS games played against humans, to determine
if adaptive game AI actually increases the entertainment
value of a game.
 In the present research, the translation of the evolved
solutions to improvements in domain knowledge was done
manually. Because the translation requires understanding
and interpretation of the evolved solutions, it is difficult to
perform the translation automatically. Nevertheless, in future
work we will attempt to design an automated mechanism
that translates tactics evolved by offline evolutionary
learning into an improved rulebase for dynamic scripting.
The addition of such a mechanism would enable us to
completely automate the process of designing successful
rulebases for dynamic scripting.

REFERENCES
Brockington, M and M. Darrah. 2002. “How Not to

Implement a Basic Scripting Language.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River
Media, Hingham, MA, pp. 548–554.

Buckland, M. 2004. “Building better Genetic Algorithms.”
AI Game Programming Wisdom 2 (ed. S. Rabin), Charles
River Media, Hingham, MA, pp. 649–660.

Buro, M. 2003. “RTS Games as Test-Bed for Real-Time AI
Research”. Proceedings of the 7th Joint Conference on
Information Science (JCIS 2003) (eds. K. Chen et al.),
pp. 481–484.

Cohen, R.C. (1995). Empirical Methods for Artificial
Intelligence, MIT Press, Cambridge, MA.

Demasi, P. and A.J. de O. Cruz. 2002. “Online Coevolution
for Action Games.” GAME-ON 2002 3rd International
Conference on Intelligent Games and Simulation (eds. Q.
Medhi, N. Gough and M. Cavazza), SCS Europe Bvba,
pp. 113–120.

Gold, J. 2004. Object-Oriented Game Development,
Addison-Wesley, harrow, UK.

Goldberg, D.E. 1989. Genetic Algorithms in Search,
Optimization & Machine Learning, Addison-Wesley,
Reading, UK.

Johnson, S. 2004. “Adaptive AI: A Practical Example.” AI
Game Programming Wisdom 2 (ed. S. Rabin), Charles
River Media, Hingham, MA, pp. 639–647.

Laird, J. E. and M. van Lent. 2000. Human-Level AI's Killer
Application: Computer Game AI. Proceedings of AAAI
2000 Fall Symposium on Simulating Human Agents,
Technical Report FS-00-03. AAAI Press 2000, pp. 80–
87.

Laird, J.E. 2001. “It Knows What You’re Going To Do:
Adding Anticipation to a Quakebot.” Proceedings of the
Fifth International Conference on Autonomous Agents
(eds. J.P. Müller et al.), ACM Press, Montreal, Canada,
pp. 385–392.

Manslow, J. 2002. “Learning and Adaptation.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River
Media, Hingham, MA, pp. 557–566.

Manslow, J. 2004. “Using reinforcement learning to Solve
AI Control Problems.” AI Game Programming Wisdom 2
(ed. S. Rabin), Charles River Media, Hingham, MA, pp.
591–601.

Ponsen, M. 2004. Improving Adaptive AI with Evolutionary
Learning. MSc Thesis, Delft University of Technology.

Rabin, S. 2004. AI Game Programming Wisdom 2. Charles
River Media, Hingham, MA.

Russel, S. and J. Norvig. 1995. Artificial Intelligence: A
Modern Approach. Prentice Hall, Pearson Education,
Upper Saddle River, NJ.

Schaeffer, J. 2001. “A Gamut of Games.” AI Magazine, Vol.
22, No. 3, pp. 29–46.

Spronck, P., I. Sprinkhuizen-Kuyper, and E. Postma. 2004a.
“Online Adaptation of Game Opponent AI with Dynamic
Scripting.” International Journal of Intelligent Games
and Simulation (eds. N.E. Gough and Q.H. Mehdi), Vol.
3, No. 1, University of Wolverhampton and EUROSIS,
pp. 45–53.

Spronck, P., I. Sprinkhuizen-Kuyper, and E. Postma. 2004b.
“Enhancing the Performance of Dynamic Scripting in

Computer Games.” Entertainment Computing – ICEC
2004 (ed. M. Rauterberg), LNCS 3166, Springer-Verlag,
pp. 273–282.

Spronck, P., I. Sprinkhuizen-Kuyper, and E. Postma. 2004c.
“Difficulty Scaling of Game AI.” Proceedings of the
GAME-ON 2004 Conference. (To be published)

Tozour, P. 2002. “The Perils of AI Scripting.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River
Media, Hingham, MA, pp. 541–547.

	KEYWORDS
	ABSTRACT
	INTRODUCTION
	REAL-TIME-STRATEGY GAMES
	ADAPTIVE GAME AI IN RTS GAMES
	Dynamic Scripting
	Dynamic Scripting for RTS games
	Dynamic Scripting in Wargus
	Evaluating Dynamic Scripting in Wargus
	Results

	EVOLUTIONARY TACTICS
	Experimental Procedure
	Encoding
	Fitness Function
	Genetic Operators
	Results

	IMPROVING ADAPTIVE AI
	Observations on the Evolved Tactics
	Improving the Rulebase for Dynamic Scripting
	Evaluating the Improved Rule-base in Wargus

	CONCLUSIONS
	Future Work

	REFERENCES

