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Abstract
The effectiveness of Neural Machine
Translation (NMT) models largely de-
pends on the vocabulary used at train-
ing; small vocabularies can lead to out-of-
vocabulary problems – large ones, to mem-
ory issues. Subword (SW) tokenization
has been successfully employed to miti-
gate these issues. The choice of vocabu-
lary and SW tokenization has a significant
impact on both training and fine-tuning an
NMT model. Fine-tuning is a common
practice in optimizing an MT model with
respect to new data. However, new data
potentially introduces new words (or to-
kens), which, if not taken into considera-
tion, may lead to suboptimal performance.
In addition, the distribution of tokens in the
new data can differ from the distribution of
the original data. As such, the original SW
tokenization model could be less suitable
for the new data.

Through a systematic empirical evaluation,
in this work we compare different strate-
gies for SW tokenization and vocabulary
generation with the ultimate goal to un-
cover an optimal setting for fine-tuning a
domain-specific model. Furthermore, we
developed several (in-domain) models, the
best of which achieves 6 BLEU points im-
provement over the baseline.

1 Introduction

Fine-tuning is a common practice in optimizing an
MT model with respect to new data. It can be ei-
© 2022 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

ther in the context of domain adaptation where an
existing model is tuned for a certain domain (dif-
ferent from what the model was originally trained
for) (Dakwale and Monz, 2017; Wang et al., 2019;
Mahdieh et al., 2020), or simply to improve the
performance of the model (Wang et al., 2017). Re-
gardless of the fine-tuning objective, the newly in-
troduced data brings in new information. For ex-
ample, it could be the case that the new data con-
tains new words that have not been seen in pre-
vious cycles of training the model; the word seg-
mentation is suboptimal for the new data (Lim et
al., 2018; Yeung, 2019; Sato et al., 2020). If not
properly addressed, this new information may not
have the desired effect on the MT system. For ex-
ample, if new words are not included in the vocab-
ulary a mismatch in vocabulary causing an out-of-
vocabulary (OOV) issues will occur.

In this paper, we present an empirical evalua-
tion of several models trained on different com-
binations of settings for generating the subwords
and vocabularies, aiming to identify a best-case
setup for fine-tuning an MT engine. That is, we
aim to investigate which fine-tuning conditions (or
settings) of a domain-specific model lead to the
best performance. Our research focuses on fine-
tuning for improving the translation quality of an
engine rather than on domain adaptation. With our
research we aim to answer the following main re-
search question:

RQ1 Given a machine translation model and a
fine-tuning data set, what is the optimal com-
bination of subword generation approach
and vocabulary?

In addition, we investigate two secondary re-
search questions:
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RQ2 How does fine-tuning, i.e. training an MT
system on one data set, followed by training
on another, compare to training an MT sys-
tem with all data at once?

RQ3 What is the time reduction, if any, when fine-
tuning, compared to training an MT system
with all data at once?

To answer these questions we exploit two data
sets (∼0.9M and ∼1.1M parallel sentences) to
train and one data set (∼179k parallel sentences)
to fine-tune several MT systems. This we do so
that we can investigate how much we can im-
prove a model trained on sufficient amount of data
(approximately 1M sentence pairs) and then fine-
tuned with extra data, which on its own would not
be enough to train a model.

Each fine-tuned alternative, is trained on a dif-
ferent set of options of how the subwords and the
vocabulary are created. For the fine-tuning pro-
cess, we proposed a method to find the best fine-
tuning setup based on available data. In our case
study, for example, we have access to the data
of both models (initial and fine-tuned), however,
as already discussed in (Freitag and Al-Onaizan,
2016; Dakwale and Monz, 2017), initial models
are mostly deployed in an application; thus data
might not be available at the production time. As
such, it is paramount to have a guideline based on
the available data THAT determines how to best
generate sub-words and vocabularies. In this work
we use Byte-Pair Encoding (Sennrich et al., 2016a)
for subword units.

We also trained models with all available data at
once to assess whether fine-tuning has any benefit.
We also evaluated MT systems trained on the small
in-domain data set first and then fine-tuned on the
larger sets. That is in order to test the hypothesis
that a system trained on a small, focused data set
and then fine-tuned on a larger set is worse than the
other way round.1

It is noteworthy that the point of this research,
however, is to investigate what is the best fine-
tuning setup; and not to find the best model.
That is, if we start from data set A (regardless of
whether it is in-domain, out-of-domain, selected,
or other) and then we fine tune on data set B, what
should we take under consideration with respect to
BPE and vocabulary.

1This hypothesis has been proven in other domains, e.g. in
robots control systems (Spronck et al., 2008).

This paper is organized as follows. We first
cover the data we used in our experiments. In Sec-
tion 3, we present our decision points. Our empiri-
cal experiments including details on the data, sub-
words, vocabulary, systems specifications, base-
lines and results are shown in Section 4. Section 5
presents our analysis with respect to the RQs. We
cover the related work and conclude our work in
Section 6 and 7, respectively.

2 Data

In our research we used two data sets: (i) two cor-
pora of selected in-domain data in which sentence
pairs have been selected from an out-of-domain
corpus, i.e., ∼0.9M and ∼1.1M selected from the
∼31M sentences of collected WMT corpora2 ac-
cording to the data selection method presented
in (Pourmostafa Roshan Sharami et al., 2022); and
(ii) a small (∼179K parallel sentences) original in-
domain data set.

Selected In-domain Data set The selected in-
domain data used for training the initial models
(i.e., before doing fine-tuning), was introduced
in (Pourmostafa Roshan Sharami et al., 2022). We
used, in particular, Top5 and Top6 because they
led to the best translation performance in their
work. The selected in-domain data is the result
of ranking out-of-domain sentences according to
their similarity with an in-domain data set. The
language pair is English-French. Furthermore, as
indicated by their work, the volume of the data is
sufficient to train MT systems with high translation
quality.

Original In-domain Data set The original in-
domain data we experimented with is the Inter-
national Workshop on Spoken Language Transla-
tion (IWSLT) 2014 corpus (Cettolo et al., 2014).
It is a collection of TED talks. To evaluate our
models during training and find the models’ per-
formance we used one development set (dev2010)
and two test sets (test2010 and test2011), respec-
tively. IWSLT 2014 and WMT are commonly used
in the context of Domain Adaptation (DA) as an in-
domain data set (Axelrod et al., 2011; Luong and
Manning, 2015; Chen et al., 2016; Wang et al.,
2017; Pourmostafa Roshan Sharami et al., 2022),
which facilitates for better replicability.

2http://statmt.org/wmt15/
translation-task.html

http://statmt.org/wmt15/translation-task.html
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Table 1 shows statistics of the data we used in
our experiments.

Type of data Name Sentences

Selected in-domain
Top5 895k

Top6 ∼1M

Original in-domain

(IWSLT 2014)

TED training 179K

TED dev2010 887

TED test2010 1664

TED test2011 818

Table 1: Summary of in-domain data sets (in-domain and out-
of-domain), plus out-of-domain data sets.

3 Decision points

As noted in Section 1, with this work we aim to
identify the most effective way of fine-tuning an
MT system with respect to subwords and vocabu-
lary. Consider a model M trained on a data set D
which is representative for a certain domain d and
a fine-tuning data set E. The following decision
points need to be made:

Available data: Choose which fine-tuning data
set or a combination of data sets from E should
be used. As shown in previous work, using
all available data is not always beneficial as it
does not always contribute to the overall per-
formance (especially when it comes to specific
domains) while introducing computational over-
head (Wang et al., 2019; Soto et al., 2020; Pour-
mostafa Roshan Sharami et al., 2022).

Subwords: Choose a model to construct sub-
word units. Use either (i) the BPE model learned
on the set D, and thus used in the training of
model M (DBPE), (ii) learn a new BPE model
on the selected fine-tuning data set (EBPE) or (iii)
learn a new BPE on the concatenation of D and E
((D+E)BPE). This is mainly because there might
be new and unique words in the fine-tuning data
that did not appear in the set D, for which the orig-
inal BPE model would be suboptimal. That can be
the case if we tune an existing model toward a dif-
ferent domain other than d. However, comparing
(ii) and (iii), training data from the original model
may not be available and as such only (ii) could be
a viable option.

Vocabulary: Choose the vocabulary, that is, ei-
ther (i) use the vocabulary of the original model

M (|D|), (ii) extend it with tokens from the fine-
tuning set E (|D+E|) or (iii) create a new vocab-
ulary from E (|E|). This is important because a
relevant vocabulary set is the pillar of the MT per-
formance. Thus, finding such a set mitigates the
impact of OOV and rare words.

These two factors – subwords and vocabulary –
need to be jointly considered as each of them has a
significant impact on the MT performance. To this
end, we face an optimization problem along two
dimensions. As the different options at each di-
mension are independent of the rest, 3 the solutions
can be enumerated as combinations over these op-
tions. This gives us 9 combinations: apply the
BPE model of the original MT system DBPE on
the data for fine-tuning E and train three systems
with the different vocabulary options |D|, |D+E|
and |E|; train a new BPE model on the fine-tuning
data, EBPE and apply it on the data, generating
three different vocabularies (|D|, |D+E| and |E|).

Following these decision points, given a fine-
tuning data set we can consider three BPE mod-
els. With these models we (i) create the vocabu-
lary sources; and (ii) create the training sets for
fine-tuning. Typically these two processes are tied
to each other, i.e. once the BPE model is learned
and applied on the training data, the vocabulary is
the set of subword units that appear in the (pro-
cessed) data. However, this is not a hard constraint.
That is, we can use a vocabulary that is derived
from data processed with a different BPE model
than the one of the training or fine-tuning data. For
instance, data set E can be processed with BPE
EBPE but the vocabulary used for training can still
be based on D derived from applying DBPE .

4 Experiments

To find the best possible setting for fine-tuning
an in-domain model, we followed the decision
points in Section 3, conducted experiments with
the English-French data presented in Section 2
and compared our fine-tuned models with each
other and to different baselines using BLEU (Pa-
pineni et al., 2002), TER (Snover et al., 2006) and
chrF (Popović, 2015).

Figure 1 illustrates our experimental approach.
According to the given data and our task, i.e.,

fine-tuning a model trained on Top5 or Top6 (D =

3It is noteworthy that we are aware that vocabulary sets in
every combination are dependent on BPE models, and here
we only defined “combinations” as independent compared to
their other peers.



Figure 1: An overview of fine-tuning an MT. The data pack-
age shows the data sets we used for experiments. These can be
used for training the initial models or fine-tuning the trained
models.

Top5 or D = Top6) with original in-domain data
(E =in-domain data) we have the 54 options, 27
for each trained model. There are 3 options for
the data source of the vocabulary (Top5 or Top6,
ID or the combination thereof) and 3 options for
building the BPE which then impact the segmen-
tation of the data used to build the vocabulary
but also the segmentation of the fine-tuning data.4

That is, there are 3 options to build a BPE model
to be used for segmenting the data from which the
vocabulary will be created and 3 options to build a
BPE model to be used to segment the fine-tuning
data.

It is noteworthy that the number of merge oper-
ations for BPE is 50K, and a separate BPE model
was created for each source and target.

Figure 2 gives an overview of the different op-
tions.

Based on these 54 options we define three types
of experiments. First, experiments in which the
BPE model is built on either the original data
D = Top5/6 or on the fine-tuning data E = ID
(but not on their combination) and the vocabulary
is generated from the same data. With this type of
experiments we investigate (hypothetical) scenar-
ios where either there is no access to the original
data set (D) nor vocabulary (|D|), and as such only
the fine-tuning dataset (E) can be used, or these are
available and we can exploit them directly without
spending time or resources on processing the fine-
tuning data to extract |E|. Second, experiments
in which the vocabulary is built on both D and E

4As noted at the end of Section 3 we are not strictly con-
strained against mixing different word segmentations for the
training data and for the vocabulary in a fine-tuning test case.

(Top5/6 + ID). This would be considered a very
favourable scenario, where both D and E are avail-
able and can be exploited jointly. Under such as-
sumption, we also build baseline models on D+E
(see Section 4.2). Third, experiments in which the
BPE used to segment the data on which the vo-
cabulary is built is different from the BPE used to
segment the fine-tuning data. These experiments
would cover (hypothetical) scenarios in which the
vocabulary is given, but it does not correspond to
the exact way the subwords of the fine-tuning data
have been generated. With this, third, set of ex-
periments, we want to see whether it is possible to
reach sufficient quality under limiting conditions.

To reduce the amount of computational time and
resources we implemented 11 of the 27 sets of
experiments. For the second type of experiments
we excluded those in which different BPE models
are used for the vocabulary and for the fine-tuning
data. That is because given that both D and E are
mixing BPE models would be unnecessary and im-
practical. Following the same reasoning, experi-
ments from type 1 and 3 where two BPE models –
one learned from D+E and another learned either
from D or from E – were excluded. These leaves
us with the 11 experiments enumerated in Table 3.

4.1 NMT System Description

We used the OpenNMT-py5 framework (Klein et
al., 2017) for training as well as fine-tuning our
NMT models. We fine-tuned transformer mod-
els (Vaswani et al., 2017) for a maximum of
200K steps; intermediate models were saved and
validated every 1000 steps until reached conver-
gence. We set an early stopping condition such
that the fine-tuning process was stopped after 10
validations steps with no improvement. Since the
models we fine-tuned were proposed by (Pour-
mostafa Roshan Sharami et al., 2022), we kept
the NMT setup consistent and used the same hy-
perparameters. To run all NMT systems effec-
tively and aligned with our research questions, we
also set other hyperparameters as suggested by
the OpenNMT-py community to simulate Google’s
default setup (Vaswani et al., 2017).

For fine-tuning, we distributed the training over
three NVIDIA Tesla V100 GPUs. We encoded
all data as a sequence of subwords units using the
Byte Pair Encoding (BPE) algorithm (Sennrich et
al., 2016a). The number of BPE merge operations

5https://opennmt.net/OpenNMT-py/

https://opennmt.net/OpenNMT-py/


Figure 2: Tree’s leaves show different combinations that we experimented with. For sake of simplicity in our report, we assume
Top5 and Top6 as one single training data. That is, we experimented with both Top5 and Top6, however, we did not expand
the tree for each of them. “T ” also abbreviated from “Top”.

is 50K, and a separate BPE model was created for
each source and target.

4.2 Baseline Models
We compared our fine-tuned models not only to
each other but also to three different categories of
baselines:

(1) We only trained NMT systems on the
original or in-domain data (with no further
training/fine-tuning) to set up the following base-
lines. B1 -– an NMT model trained on the original
in-domain data; B2 and B3 -– NMT models trained
on the selected in-domain data Top5 and Top6 re-
spectively. As stated before, we did not fine-tune
any models to establish B1, B2, and B3, however,
we use them as baselines to measure fine-tuning
improvement over the IWSLT data set.

(2) We considered several state-of-the-art fine-
tuned models. These are compared with our mod-
els to show the impact of our fine-tuning pro-
cess. These are B4 (Luong and Manning, 2015),
B5 (Axelrod et al., 2011), B6 (Chen et al., 2016),
B7 (Wang et al., 2017). It is worth mentioning that
we defined these baselines to evaluate the impact
of the fine-tuning procedure itself before compar-
ing the proposed combinations with each other.

(3) We mixed original (Top5 or Top6) and in-
domain (ID) data sets and then trained a model.
That is, we did not fine-tune any models in this
category. This helps to show and measure the dif-
ference between merge and fine-tuning operations.

The baseline results are shown in Table 2.

4.3 Results and Analysis
The performance of our fine-tuned MT systems
is evaluated with respect to two test sets using
case insensitive BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and chrF2 (Popović,

#
Test set 2010 Test set 2011

BLEU↑ TER↓ CHRF2↑ BLEU↑ TER↓ CHRF2↑

B1 31.9 56.6 57.0 38.3 49.7 61.0

B2 30.9 59.1 57.0 36.7 51.5 62.0

B3 31.3 58.3 58.0 36.5 50.9 62.0

B4 32.2 N/A N/A 35.0 N/A N/A

B5 32.2 58.3 N/A 35.5 N/A N/A

B6 30.3 58.3 N/A 33.8 N/A N/A

B7 32.8 58.3 N/A 36.5 N/A N/A

B8 31.8 57.3 57.3 37.9 50.2 62.2

B9 32.2 56.8 57.6 38.8 48.7 62.7

Table 2: Results of the baseline models. B1, B2, and B3
represent the NMT models trained on the original ID data,
Top5, and Top6, respectively. B4, ..., B7 represent mod-
els fine-tuned in previous studies. B8 and B9 represent the
models trained on the mixture of (ID, Top5) and (ID, Top6),
respectively.

2015) metrics, as implemented withing the sacre-
BLEU toolkit (Post, 2018). Our results are re-
ported in Table 3). We also analyzed the results
of different combinations with respect to statistical
differences (see Section 5.1).

According to Table 3, the best-to-worst ranking
of fine-tuning combinations for both Top5 and
Top6 according to BLEU, TER and chrF2 are
C3, C1, C9, C11, C2, C10, C4, C8, C6, C7, C5.
In our experiments, C3 achieved the highest
BLEU score among all combinations; except in
two cases where other combinations achieved the
same scores as follows: (1) C1 on test set 2010
for translation of Top5 and Top6; and (2) C9 on
test set 2010 and 2011 for translation of Top5.
C3, C1, and C9 also achieved the highest chrF2

and lowest TER scores, suggesting the best set-
ting for fine-tuning our in-domain model could be



a combination of (i) a BPE model created from the
initial models’ training data (i.e., the one used for
training models – top5 or Top6); and (ii) a vocabu-
lary set created from the fine-tuning data (i.e., ID);
or the initial’s models training data or the combi-
nation thereof. It is noteworthy that fine-tuning a
model using this setting is not always feasible as
we may not have access to the data used to train
the original model. But, in case of availability, it is
suggested to follow the C3’s setting.

The next promising fine-tuning setting is C11
which suggests combining the initial models’
training data with the fine-tuning data. However,
if they both are available, we prefer to follow the
C3, C1, or C9 as these may have a better impact
on the translation quality.

The fifth, sixth, and seventh suggested fine-
tuning settings according to the evaluation metrics
are C2, C10, and C4, respectively. These com-
binations indicated a model fine-tuned with (i) a
BPE model created from the fine-tuning data (i.e.,
ID), and (ii) a vocabulary set created from either
the fine-tuning data (i.e., ID) or the initial’s mod-
els training data or the combination thereof could
be employed to have an effective fine-tuning pro-
cess. However, fine-tuning a model with C10 and
C4 is only feasible if one has access to the data
used to train models. That is, if the only available
data is the one used to fine-tune a model, then it is
recommended to follow C2.

The other suggested fine-tuning settings accord-
ing to their evaluation scores in descending order
are: C8, C6, C7, C5. It is worth mentioning that
these setups used both the fine-tuning data (i.e.,
ID) and the initial models’ training data, however,
did not perform well in terms of translation qual-
ity. That shows the importance of BPE models and
vocabulary for fine-tuning.

After analyzing our results and extracting a
comprehensive guideline of data, BPE, and vocab-
ulary for fine-tuning models, we compared combi-
nations with three categories of baselines to show
the effectiveness of the fine-tuning itself regard-
less of the different fine-tuning combinations. Ac-
cording to the results summarised in Table 2 and
Table 3, all fine-tuned models outperformed the
baselines. For example, C3 6 BLEU scores were
increased by roughly 13% (31.9 to 36.1), 16.8%
(30.9 to 36.1), 10% (32.8 to 36.1), and 13.5% (31.8
to 36.1) compared to baselines B1, B2, B7, and

6Top5←ID and evaluated with test set 2010

B8 respectively. 7 These figures indicate that the
fine-tuning process was a better option than train-
ing a model at once. These results raise an inter-
esting question about how data should be fed to the
neural network at training to achieve optimal per-
formance (both in terms of translation quality as
well as training time).

5 Discussions

In this section, first we discuss the pairwise statis-
tical significance of the evaluation scores between
the fine-tuned NMT models. Second, we investi-
gate the training time with fine-tuning compared
to the training time of baselines. Third, we show
to what extent the choice of an initial model for
fine-tuning affects the performance of translation.

5.1 Statistical Significance Test

We computed pairwise statistical significance of
the results shown in Table 3 in terms of BLEU
scores by using bootstrap resampling and 95%
confidence interval for both test sets (2010 and
2011) based on 1000 iterations, and samples of 300
sentences. According to the test output, most fine-
tuned models have a statistically significant differ-
ence except those systems pairs listed in Table 4.

In addition to the analysis presented in Sec-
tion 4.3, this shows two main points: (1) if there
is no access to both initial and fine-tuned mod-
els’ data we can achieve quite similar performance
only from the initial data. For example, the ini-
tial model –Top5– fine-tuned as per C1 and C3
on the 2010 test set have no differences in terms of
BLEU score. (2) having one single data set versus
two different ones for creating BPE models and vo-
cabulary may not always have a significant impact
on the the model performance. For example, while
C2 was trained with one single data set (ID), C4
employed both ID and Top5 and still achieved the
same performance (on test set 2010).

5.2 Training Time

In Table 5 we present the running time (RT) for
training the baselines (B1, B2, B3, B8 and B9)
and for fine-tuning for the best model (C3) for
both Top5 and Top6.8 Fine-tuning time is about

7We chose B7 as the representative of the second baseline cat-
egory because it achieved the highest BLEU scores among the
fine-tuned baselines.
8Fine-tuning for all models and SW and vocabulary combi-
nations took approximately 1h and 30 minutes. As such we
limit our discussion to C3.



# X Y Z

Models

Top5← ID Top6← ID

Test set 2010 Test set 2011 Test set 2010 Test set 2011

BLEU↑ TER↓ chrF2↑ BLEU↑ TER↓ chrF2↑ BLEU↑ TER↓ chrF2↑ BLEU↑ TER↓ chrF2

C1 Top5/6 Top5/6 Top5/6 36.1 52.4 60.3 43.7 44.1 66.1 36.4 52.3 60.4 44.1 43.7 66.4

C2 ID ID ID 35.9 52.5 60 42.8 44.9 65.2 36.1 52.5 60.0 44.0 43.7 65.8

C3 Top5/6 ID Top5/6 36.1 52.4 60.4 44.0 43.6 66.6 36.4 52.2 60.4 44.4 43.5 66.4

C4 ID Top5/6 ID 35.5 52.8 59.7 43.3 44.5 65.6 35.5 53.0 59.6 43.6 44.1 65.7

C5 Top5/6 Top5/6 ID 33.4 53.8 58.6 40.7 45.4 64.2 33.6 53.3 58.7 40.9 45.5 64.2

C6 ID Top5/6 Top5/6 35.4 53.0 59.7 43.5 44.6 65.5 35.5 53.6 59.9 43.3 44.4 65.7

C7 Top5/6 ID ID 33.4 53.3 58.6 40.9 45.1 64.2 33.2 53.4 58.2 40.2 45.4 64.0

C8 ID ID Top5/6 35.4 52.8 59.6 42.8 44.6 65.1 35.1 53.1 59.6 43.3 44.4 65.7

C9 Top5/6 Top5/6+ID Top5/6 36.1 52.4 60.1 44.0 43.6 66.4 35.9 52.6 60.4 44.3 43.5 66.6

C10 ID Top5/6+ID ID 35.6 52.7 59.9 43.0 44.9 65.2 36.1 52.3 60.2 44.0 43.6 66.0

C11 Top5/6+ID Top5/6+ID Top5/6+ID 36.0 52.5 60.1 44.1 43.6 65.9 36.4 52.3 60.3 44.0 43.8 66.4

Table 3: Evaluation scores of the fine-tuned NMT systems. X represents the source of the BPE model used to create vocabulary;
Y represents the source of the vocabulary set and Z represents the source of the BPE model used to create the data for fine-
tuning. With TopN ← ID we denote that a model trained on TopN is fine-tuned on ID data.

Test Set 2010 Test Set 2011

Top5

(C1, C3)
(C6, C8)
(C2, C4)
(C5, C7)

(C1, C6)
(C4, C5)

Top6 (C1, C3)
(C6, C8)

(C1, C6)
(C4, C5)

Table 4: Results of systems pairs that are not statistically sig-
nificant (for p < 0.05). (CX, CY) means models that fined
tuned with the setup suggested in combinations CX and CY
have no statistically significant difference based on 300 sam-
ples.

1 hour and 30 minutes compared to the training
time of an MT system with all data at once (B8 or
B9) which is about 5 or 6 hours. That shows that
the time for fine-tuning is only a fraction (27%) of
the time for training models on all data at once.
On the one hand, compared to the sum of training
and fine-tuning times, that is B2 or B3 followed
by C3 which amount at 12 hours and 6 minutes
and 9 hours and 52 minutes accordingly, training a
model “from scratch” is preferable. On the other
hand, training “from scratch” does not achieve the
same performance as with fine-tuning (as already
stated this in Section 4.3).

5.3 Reverse Fine-tuning
We also assess whether the initial model for fine-
tuning in our case study (Top5/6) is effective or
we may need to reverse the order in which data is
presented for training. That is training MT systems
on the original in-domain data followed by fine-

#
Complete RT

D:H:M
Step

Best model RT
D:H:M

Step

B1 00:03:53 18,000 00:00:50 5,000

B2 00:10:33 35,000 00:05:50 20,000

B3 00:08:20 35,000 00:04:26 19,000

B8 00:05:47 23,000 00:03:16 13,000

B9 00:06:17 25,000 00:04:45 15,000

C3-Top5 00:01:33 12,000 00:00:17 2,000

C3-Top6 00:01:32 12,000 00:00:16 2,000

Table 5: Running time (RT) for training and fine-tuning.
The first baselines B1, B2 and B3 are trained on original
in-domain data, Top5, and Top6 accordingly; baselines B8
and B9 are combinations of ID and Top5 or ID and Top6.
C3− Top5 and C3− Top6 indicate the fine-tuning with the
best combination (C3) of models trained on Top5 and Top6
accordingly.

tuning them on the selected in-domain data. It is
noteworthy that we conducted this experiment to
monitor the performance as well as the sensitivity
of the fine-tuning process toward the initial model.

According to Table 6, all fine-tuned models out-
performed the reverse fine-tuned models. That
means, starting with the selected in-domain mod-
els (Top5/6) is more efficient than starting with
the original in-domain. This also reveals the fact
that trained on large data (such as Top5/6) pre-
vents overfitting on the small in-domain data (such
as ID). This transformation to the new parameters
can cause a drop in models performance for the
test instances from the initial data (Li and Hoiem,
2016; Dakwale and Monz, 2017). However, this is



not entirely true in our case study as we worked on
one domain for the entire research. That is, both
initial and fine-tuning data are from one specific
domain, and only the first one is relatively large.
In the future we plan to expand on more domains
and assess the impact of different data quantities
and domain-specificity.

#
Test set 2010 Test set 2011

BLEU↑ TER↓ CHRF2↑ BLEU↑ TER↓ CHRF2↑

ID ← Top5 30.8 59.4 56.8 36.3 52.3 61.1

ID ← Top6 31.5 58.2 57.3 37.8 50.3 61.9

Table 6: The results of reverse fine-tuning. With ID ←
TopN we denote that a model trained on I is fine-tuned on
TopN data.

6 Related Work

There is a significant amount of research on the
topic of fine-tuning MT. Most prior studies have
investigated adapting models to a different do-
main. That is, they first employed a large out-
of-domain data and then fine-tuned it on small in-
domain data. Among others, (Luong et al., 2015)
did the first successful work, where they trained
a model on English-German general-domain data
and then fine-tuned it on a new domain data (con-
versational) in the same languages. They claimed
an increase of 3.8 BLEU points compared to the
original model (25.6 to 29.4) without further train-
ing.

Another method to improve the translation per-
formance on the new domain without degrading
the performance on the generic domain test set
was proposed in (Freitag and Al-Onaizan, 2016).
To this end, they ensembled the fine-tuned model
with the already trained baseline model; and evalu-
ated their method by IWSLT 2015 evaluation cam-
paign (Cettolo et al., 2015). The authors reported a
gain of 7.2 BLEU points on the in-domain test set
while still retaining the performance on the out-of-
domain test set.

Following that, (Freitag and Al-Onaizan, 2016)
demonstrated that while an ensemble approach for
fine-tuning seems a good option, the performance
of the fine-tuned models still drops for the generic
domain task, especially when it comes to domain-
specific contexts (e.g., medical and legal domain).
This is mainly because the in-domain data set at
topic or genre level (van der Wees et al., 2015),
comprises new vocabulary and linguistic features
that are different from the generic data (Koehn and

Knowles, 2017). To fix this problem, they pro-
posed a fine-tuning method based on knowledge
distillation (Hinton et al., 2015).

There is also other research carried out to solve
the vocabulary mismatches in the context of fine-
tuning. For instance, (Sato et al., 2020) proposed
a method to adapt the embedding layers of the
initial model to the target domain. They per-
formed this by projecting the general word em-
bedding obtained from target-domain monolingual
data onto source-domain embedding. The au-
thors reported 3.86 and 3.28 BLEU points gain in
English→Japanese and German→English transla-
tion, respectively.

As segmenting words and generating vocab-
ulary hugely impact the MT performance (Ata-
man and Federico, 2018) extensively evaluated
the problem of segmenting words at a subword
level and compared two word segmentation meth-
ods: Byte-Pair Encoding (BPE) (Sennrich et al.,
2016b) and the Linguistically-Motivated Vocab-
ulary Reduction (LMVR) (Ataman et al., 2017)
for NMT. They compared these approaches in five
morphologically-rich languages and reported that
LMVR achieved better performance in the tested
languages.

7 Conclusion and Future Work

In this paper, we conducted a systematic analysis
based on a commonly used domain-specific data
set (IWSLT 2014) to find the optimal combina-
tion of subword generation approach and vocab-
ulary for fine-tuning NMT models. In addition to
comparing the performance of 22 models (11 op-
tions for two training sets), we investigated how
fine-tuning impacts training time and MT perfor-
mance, compared to training an MT model with all
data at once. Through our empirical evaluation, we
have created a state-of-the-art model for in-domain
translation that can be employed in different con-
texts, among others, multilingual domain adapta-
tion (Cooper Stickland et al., 2021).

Considering the available data, we present two
decision points (i.e., subwords and vocabulary)
that need to be made prior to fine-tuning, along
with a third one about crossing the BPE source for
the training/fine-tuning data and for the vocabu-
lary. Our experiments outline a roadmap with three
possible options for fine-tuning in-domain mod-
els as follows: (1) In case both the initial model’s
data (D) and fine-tuning data (E) are available, it



might be effective to train BPE models and cre-
ate vocabulary using D and E, respectively. (ii)
Otherwise, it might be viable to create BPE and
vocabulary based on D; and (iii) if the last two
options were not possible, it suggests creating the
decision points all based on E. It is worth noting
that all fine-tuning strategies the initial MT models
improved the baselines, with the maximum gained
of 6 BLEU points (30.9 to 36.1).

In our future work, we intend to improve the
generalization of our pre-trained (in-domain) mod-
els by further training on an out-of-domain cor-
pus, so it possibly enables these models to translate
generic inputs as well as their specialized context
without forgetting what they already learned. An-
other research direction would be to investigate the
proposed decision points on other language pairs
and domains.

The data and fine-tuned models are available
at: https://github.com/JoyeBright/
FT-IWSLT2014-BPEVocab.
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