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Abstract—Traditionally, the relative strength of a chess player
within a competitive pool is identified by a rating number. In
order to reach a fair rating that best represents their level
of play, chess players are required to play numerous games
against various opponents within that pool. However, intuitively,
experienced chess players are capable of extracting a rough
estimate of a player’s strength by looking at the moves they made
in a single game. How accurately could a machine learning model
based on a large dataset of chess games predict player ratings
from a single game, and what would these predictions depend
on? This paper presents an attempt to identify, encode and model
chess gameplay features in order to predict a player’s rating
from a single game played. If successful, such a model could be
employed to attach a fair initial rating to a new player within a
pool before any games are played. We use an extensive dataset of
chess games downloaded from a popular online chess platform,
from which we extract a set of 30 features which are used to
model and ultimately predict players’ ratings. Our findings show
that we are capable of predicting the rating bracket of a player
with 79.3% accuracy when considering the extreme ends of the
dataset (lowest vs. highest rated players), while the accuracy
consistently drops as we increase the respective bracket width.
We discovered that the most important features of our predictive
models are both theory- and engine-related; most importantly, the
features that we have extracted lead to explainable, quantifiable
predictions of chess player strength.

Index Terms—Chess, Player rating, Rating prediction, Predic-
tive modelling

I. INTRODUCTION

Chess is arguably the most popular board game in the
history of humanity, with its origins being traced back to
ancient Asian civilisations [15]. In modern days, chess is
played casually and competitively both “over the board” as
well as online, through numerous web and mobile applications.
The game of chess has evolved into a multi-million dollar
market; the prize money for the 2019 world chess champi-
onship reached 1,600,000$ [21], meanwhile the annual profit
of the most popular online chess platform chess.com is over
50 million $ [1].

The relationship between computers, chess and Artificial
Intelligence (AI) is synergetic. The implementation of chess-
playing agents has been at the forefront of AI research and
has set influential milestones, such as IBM’s DeepBlue beating
the world champion Garry Kasparov in 1997 [9]. Nowadays,
chess engines have greatly surpassed the level of human play;

they are mostly used to analyse and evaluate chess moves
accurately and efficiently. Furthermore, the vast volume of
publicly available chess game data has enabled chess research
beyond the scope of chess-playing agents, such as computer
vision [7], cognitive science [10] and human performance
analysis [11].

In this paper, we use a large dataset of online chess games
through which we attempt to model human players’ level of
play. Our predictive models take the moves from an unknown
single chess game as input and produce a bin-based estimation
of player skill rating as output. More specifically, we divide
our dataset in 10 bins, each containing 10% of the dataset’s
games, sorted by player rating. Of the total dataset, a portion
equally sampled from all bins is used for model training, while
each individual game of the remaining data is used for the
model’s evaluation. To build our models, we extracted and
analysed a total of 30 chess gameplay features which derive
both from fundamental chess theory as well as state-of-the-art
chess engine analysis. These features were employed in order
to encode each game in the dataset.

This study presents a novel approach regarding the anal-
ysis of chess games from a machine learning perspective. If
performed accurately, the prediction of a player’s chess skill
rating from a single game’s data could be used to position
a new player into an existing pool of chess players, even
before that player competes within the pool. Moreover, beyond
predicting a player’s chess skill level, our models could be
used to interpret which aspects of chess gameplay correlate
to which skill rating bracket, providing a tool for players to
detect mistakes and improve their overall gameplay. Lastly,
reliable rating estimation could be used to detect players whose
gameplay patterns do not correspond to their actual rating,
contributing towards an automatic cheating detection system.

II. RELATED WORK

A. Development of Chess AI

In the recent past, game-playing agents have set benchmarks
for AI research in different categories of games, such as
video games (e.g. Starcraft [32] and Dota2 [8]), card games
(e.g. Hanabi [6]) and board games (e.g. Go, Shogi and
Chess [30]). In chess (and similar board games) research
particularly, a recent breakthrough was the introduction of self
play [30], where a game-playing agent achieved superhuman
performance in the game of chess through reinforcement979-8-3503-2277-4/23/$31.00 ©2023 IEEE



learning; the agent, which was only fed the rules of the
game, learned how to play by starting with random moves and
iteratively optimised its decisions. Alternatively, “traditional”
chess engines such as Stockfish use game-tree search and a
heuristic evaluation function to determine whether a specific
chess move is favorable to the player or not [22].

However, achieving mastery in the game of chess is not
the only context within which the game is studied. McIlroy-
Young et al. [23] argue that the level of mastery chess engines
have achieved is not always explainable and understandable
by human players, even of the highest level. Simply put:
humans do not perceive (and play) chess the way engines
do. Therefore, the researchers presented a series of studies
on Maia [23]–[25], a chess-playing agent based on AlphaZero
[30] which attempts to distinguish engine-like from human-
like chess gameplay.

The aforementioned studies often require vast amounts of
computational power for model training. Fundamentally, the
game of chess is estimated to have 1046 possible positions,
without including pawn promotion [31]. Therefore, at the
moment of writing, chess remains an “unsolved” game. For
that reason, the focus of this study shifts from chess-playing
agents to the estimation of human player skill level. Our main
goal is to derive a set of features, which are rooted both in
established chess theory and post-game engine evaluation, in
order to encode and interpret various levels of chess gameplay.
Ultimately, we attempt to estimate the skill level of a chess
player by only looking at a single game they played.

B. Player rating and rating prediction in games

Rating systems have been designed to extract a ranking
within a pool of entities that are compared to each other
in a pairwise fashion. Historically, the most popular rating
system is the Elo system, invented by Aprad Elo and adopted
by the World Chess Federation in 1970 [13]. Since, various
improvements and adaptations of the Elo system have been
implemented and used both in chess [16], [17], sports [19]
and online video games [28]. Player rating is mostly used in
matchmaking, i.e., determining opponent pairs or teams that
are at an approximately similar level of play. It has been shown
that playing against opponents of disproportional skill level
can negatively affect engagement [34].

Rating systems such as Elo require a relatively high number
of pairings (and results) to converge to an appropriate rating
number. Furthermore, rating numbers are only relevant within
the pool in which players or teams compete; they are not
generalisable beyond the pool. Zhang et al. [34] recently
presented a framework called QuickSkill, which attempts to
rapidly extract player ratings in multiplayer online battle arena
games. To that end, the authors propose a profiling mechanism
which receives snapshots of the game state every three minutes
and builds a detailed profile of each player based on their
in-game performance. This system was built to address the
cold-start problem of traditional rating algorithms (i.e., the
uncertainty about a player’s skill level in the early stages of
competition). The method we propose in the present paper

contributes in that direction as well; we analyse a single chess
game from an unknown player and extract an estimation of
which rating bracket that particular player belongs to.

While, to our knowledge, modelling player rating has been
sparsely studied within the context of chess [12], [18], it has
been a topic of growing interest in the video game domain.
Notably, Aung et al. [4] present a longitudinal dataset from
the game League of Legends, through which they study the
relationship between early skill learning rate and end-of-
season player performance. Their results show that with high
accuracy, their system can predict which players will achieve
master-level rating at the end of a competition, only by looking
at their initial 10 games played. Pradhan and Abourazakou [26]
introduced a multi-criteria decision-making tool in order to
extract power rankings of teams in the game Dota2. They argue
that power ranking systems are appropriate for competitive
video games (Esports) given the vast amounts of generated
data from both casual and competitive games. Their resulting
rankings are strongly correlated to traditional rating systems
such as Elo, Glicko-1 and Glicko-2.

C. Chess theory

Given the long history of the game of chess, a large volume
of resources has accumulated over the years. These resources
span from books written by chess masters [20], chess learning
books for children [14], online articles with chess tips, tricks
and principles [29], [33] to online video tutorials and analyses
of past games. In the past, IBM’s DeepBlue used chess opening
and gameplay theory principles as features [9]. Similarly, the
models presented in this paper are based on features that
are extracted from fundamental chess theory. Additionally,
we used post-game evaluations of chess positions using the
Stockfish engine [27] to enrich the feature set. A more detailed
explanation of the features used in this study is presented in
Section III.

III. EXPERIMENT

A. Dataset

The dataset used in this study consists of two Portable
Game Notation (PGN) files downloaded from Lichess1. PGN
files contain the notation of the chess moves of each chess
game, as well as meta-data such as the players’ nicknames,
player ratings and time constraints (total time available per
player – also called time control). Each file contains all
the games played on Lichess for one month. We used the
available data for the months of January and February 2013.
These were the earliest data available for download, and were
preferred for feasibility reasons; memory and computational
power constraints. The two files combined represent a total
of 240000 games, which are then split into games played by
black and white, resulting in a total of 480000 datapoints. An
overview of the dataset is illustrated in Table II.

1Lichess (https://www.lichess.org) is a popular open-source online chess
platform that provides public chess game data from games played on the
platform.

https://www.lichess.org


TABLE I
RATING RANGE AND PLAYER DISTRIBUTION PER BIN.

Bin 1 2 3 4 5 6 7 8 9 10

Rating Range 800-1339 1340-1429 1430-1492 1493-1541 1542-1593 1594-1647 1648-1706 1706-1773 1774-1870 1871-2341
Number of players 1829 2132 2038 2858 1981 1982 1869 1607 1294 778

TABLE II
DATASET DEMOGRAPHICS AND META-DATA.

Total number of unique players 3632
Average number of games per player 125.9 (σ2 = 218.9)
Minimum and maximum games per player 10 – 3139
Total number of bullet games ([1-2] mins total time) 141735
Total number of blitz games ([3-5] mins total time) 197360
Total number of rapid games ([10-15] mins total time) 117626
Total number of games in other time controls 743

From the PGN files, we kept players’ nicknames, ratings,
piece colour and the algebraic notation of the moves. Algebraic
chess notation is a method of recording the moves played
that allows the post-hoc reproducibility of a chess game.
Other features such as match outcomes and time control
were discarded from the dataset; the features used for model
implementation were encoded in such a way that they can be
considered time-invariant. More specifically, several features
were extracted at four distinct timestamps: after 25, 50, 75 and
100% of the game’s total moves. These features are indicated
by (x4) in Table III.

Before extracting the features and feeding them into ma-
chine learning models, the data went through several pre-
processing steps. Even though almost all the games from the
Lichess PGN files are consistent in terms of formatting, two
exceptions were detected and removed from the dataset. First,
1290 games (0.27% of the total dataset) without a player
nickname or rating were deleted. Then, 7473 games (1.56% of
remaining dataset) were deleted because the algebraic notation
contained engine evaluation after every move. These games
were discarded because engine evaluation will be applied at a
later step for all games in the dataset. Finally, 13773 (2.92%
of remaining dataset) games were removed, containing players
which played 10 or less total games. As mentioned in Chapter
II, chess rating is calculated over the result of all previous
games of a player. Therefore, in this research we apply a
heuristic minimum threshold of 10 games. This minimises the
number of games where a player is playing with an inaccurate
rating. The final dataset after pre-processing consists of a total
of 457464 datapoints.

Finally, the dataset was split into 10 equally sized bins,
each containing 10% of the total amount of players, sorted by
rating. Therefore, bin 1 contained the bottom 10% of players
and bin 10 contained the top 10% of players in terms of rating.
An overview of the rating ranges and the number of players
per bin is illustrated in Table I. Note that the same player can
be part of more than one bin, since their rating before each
game in the dataset is considered. Hence, game results can
cause a player to move across bins. After pre-processing, all

of the dataset’s games were evaluated by the StockFish engine
(depth = 8).

B. Feature Extraction

A total of 30 features (including features that were sampled
four times per game) were extracted from the dataset. These
features are based on chess theory and principles, as well
as StockFish engine evaluations. An overview of the features
extracted and a brief explanation is illustrated in Table III.

From the extracted features, several are only available post-
game, such as the total game length and engine evaluation-
related features. From engine evaluations, we labelled spe-
cific moves as “mistakes” or “blunders”. Specifically, based
on StockFish’s centipawn evaluation mechanism, moves that
resulted in loss of value between 100 and 300 centipawns
(approximately the value of one to three pawns) were labelled
as mistakes, whereas moves that resulted in loss of value
greater than 300 centipawns (more than the value of a minor
piece) were labelled as blunders. Furthermore, we extracted
forced checkmate-in-3 positions (positions in which the player
could force a checkmate or be checkmated by their opponent
in the next three moves).

Moreover, four features were extracted at 25, 50, 75 and
100% of a game’s total moves. These features are isolated,
doubled and tripled pawns, as well as total piece mobility. We
decided to extract the above features at distinct timestamps
in order to encode gameplay in the opening, mid-game and
end-game phases of a chess game. All features that contain
temporal information were standardised by the total number
of moves in a game, allowing for comparison across games
of different length. For example, the “first blunder” feature is
represented as a percentage of the total moves made by the
player, instead of the move’s absolute index.

Finally, the remaining features represent various principles
of chess theory, such as placing (or not placing) knights at
the edges of the chess board, placing rooks on the 7th or 2nd

rank, developing minor pieces (knights and bishops) before
major pieces (rooks and queen), castling (protecting the king
with a rook and pawns on the side of the board), as well as
defending the centre of the board in the opening phase of the
game.

C. Model Selection and Evaluation

In order to predict chess rating, the aforementioned features
are fed into machine learning classifiers, namely Random
Forest (RF) and Support Vector Machine (SVM), which are
compared accuracy- and efficiency-wise. RFs have been shown
to perform well in predicting skill learning in video games [4],
while SVMs were used to accurately predict match results in



TABLE III
FEATURES EXTRACTED FROM THE DATASET. FEATURES THAT WERE

EXTRACTED MULTIPLE TIMES THROUGHOUT THE COURSE OF A GAME (AT
25, 50, 75 AND 100 % OF THE GAME’S TOTAL MOVES) ARE HIGHLIGHTED

BY (X4).

Feature Description

Game length The total number of moves made during a
game

Moves before castling The number of moves made by a player
before the player castles. If no castling
takes place, it is equal to the total number
of moves

Isolated pawns (x4) The number of isolated pawns (pawns that
have no neighbouring pawn on either side).
Measured at 25, 50, 75 and 100% of the
game’s total moves

Doubled pawns (x4) Number of doubled pawns (two pawns of
the same colour on the same file). Mea-
sured at 25, 50, 75 and 100% of the game’s
total moves

Tripled pawns (x4) Number of tripled pawns (three pawns of
the same colour on the same file). Mea-
sured at 25, 50, 75 and 100% of the game’s
total moves

Knights or bishops A binary variable that equals 1 when bish-
ops and knights are developed (moved
from their starting square) before the queen
and rooks

Defending centre The number of minor pieces (knights and
bishops) that directly attack or defend the
four centre squares (d4, d5, e4, e5) after
the first 5 moves

Pieces moved The total number of unique pieces moved
after 10 moves

Blunders The total number of blunders made by a
player. Blunders are detected through chess
engine analysis (see Section III-B)

First blunder The move where the first blunder is made
by a player

Mistakes The total number of mistakes made by a
player. Mistakes are detected through chess
engine analysis (see Section III-B)

First mistake The move where the first mistake is made
by a player

First mate opportunity The move at which the player had the
first opportunity to win the game within
3 moves

First opponent mate The move at which the opponent had the
first opportunity to win the game within 3
moves

Mobility (x4) The difference in total number of legal
moves between the player in perspective
and the opponent. Measured at 25, 50, 75
and 100% of the game’s total moves

First knight on edge The move after which the player put a
knight on the edge of the board (files 1
or 8) for the first time

Total knights on edge The total amount of times a player put a
knight on the edge of the board

Rook On 7th The first time a player moves the rook to
the 7th (or 2nd) rank

Fig. 1. Permutation feature Importance in a 10-class classification task, using
the RF classifier.

Dota2 games [3]. While deep learning architectures could be
considered at this stage, we prefer “traditional” machine learn-
ing methods that allow the extraction of feature importances
and can be run efficiently on a consumer-grade laptop.

As target variable, we use the ID of the bin that the player
in perspective falls under. Initially, this approach translates
into a 10-class classification problem, when the entire dataset
is considered. Since the dataset is balanced in terms of total
games per bin, a random baseline yields an accuracy of 10%.
In order to extract more fine-grained results, we also treat the
problem from a binary classification perspective. To that end,
we consider two bins at a time and symmetrically increment
the width of the bins step-by-step. Initially we consider either
the two extreme ends of the dataset (bins 1 and 10) or the two
middle bins (bins 5 and 6) and iteratively add a neighbouring
bin on each end. The classifier ultimately predicts whether
the game in consideration belongs to a player from class 1
(lower-rated players) or class 2 (higher-rated players).

A 10-class classification is run using both RF and SVM.
Depending on accuracy and efficiency, the best perform-
ing model is chosen to perform the binary classification.
Consecutively, the best performing model’s hyperparameters
are tuned through a grid search method. From the 10-class
classification task, a list of feature importances of each model
is extracted. RF classifiers specifically, provide two measures
for feature importance, namely Gini and permutation impor-
tance. Research has shown that permutation feature importance
addresses the bias that is detected in Gini feature importance
and will thus be preferred [2].

IV. RESULTS

A. 10-class classification

Initially, all 10 bins were considered, constituting a 10-class
classification task. Using a subset of 80000 randomly selected
games in total, equally distributed accross all bins and using
all 30 features, we trained and evaluated both a RF and a
SVM classifier. The 80000 game subset was used in place



Fig. 2. RF predictions confusion matrix, based on a 10-class model (one
class per bin)

of the entire dataset for feasibility reasons. In particular, the
SVM required 37 minutes per fold while the RF required 46
seconds per fold in a 10-fold cross validation task (using the
80000 game subset). The 10-fold cross validation ensured no
overlap between games in the training and test set was present.
Per fold, each game in the test set was fed as an unknown test
datapoint into the model and the average accuracy over all test
games was extracted. The bin ID was set as the target variable.

We compared our results against a random baseline (10%
accuracy); both the RF and SVM model predicted the player in
perspective’s rating with an accuracy of approximately 17%.
While this is an improvement relative to the baseline, Figure 2
shows that bins 1 (lowest rated players) and 10 (highest rated
players) were predicted the most. This result is not surprising,
expecting that players at the two extreme ends of the dataset
approach the game of chess differently. This phenomenon
has also been observed in other (video) games, for example
STARCRAFT II [5]. Moreover, as illustrated in Table I, the
width and difference between middle bins is marginal; the
upper bound of bin 5 is only 1 rating point away from the
lower bound of bin 6, meanwhile the two bins have a width of
approximately 50 rating points each. This potentially explains
the low prediction accuracy of the 10-class classifier.

Lastly, Figure 1 shows the permutation feature importance
extracted from the RF model during the 10-class classification
task. As illustrated, the most important features are both theory
and engine evaluation-based. The most important feature (first
blunder) has a permutation score of .008, which means that
removing this feature from the set would decrease classifi-
cation accuracy by approximately .8%. Lastly, features with
negative permutation importance could be negatively affecting
classification accuracy by a rather small margin.

B. Binary Classification

Next, we ran binary classification tasks by defining two
classes (low vs. high rating) and iteratively increasing the class
rating width. More specifically, we ran 10-fold classification
tasks starting at bins 1 and 10, randomly sampling an equal
amount of games from both bins as training and test set.
Then at each consecutive task, we added a symmetrically

Fig. 3. Accuracy distribution per model and bin width. From left to right, the
top- and bottom-most bins of the 80000 game subset are considered, while
one neighbouring bin is added to each end at every step.

neighbouring bin (2 and 9, 3 and 8, etc.) under the respective
class label. Figure 3 illustrates the classification accuracy of
each task, starting at the extreme ends of the 80000 game
subset per class and ending up at 50% of the subset per class
(bins 1-5 vs. 6-10). We compare each task to a random baseline
which yields 50% accuracy, since the class data is balanced.

Looking at Figure 3, we observe that both models reach
an accuracy of approximately 79% when the two extreme
ends of the subset are considered. The classification accuracy
consistently drops as more bins are added to the tasks on
both ends of the subset. When the top and bottom 50%
of the subset are considered, the accuracy of both models
is approximately 64%. This iterative process shows that our
models can discriminate between the highest- and lowest-rated
players with relatively high accuracy, but at the same time
show a significant accuracy loss when each class contains 50%
of the subset.

From the above results, we conclude that accuracy-wise, our
models perform at a similar level. However, there is significant
difference in the runtime of the two models. Therefore, for
the remainder of this section, we will use the RF model to
extract further results. The hyperparameters of the RF classifier
were tuned through grid search, resulting in the following
final setup: bootstrap = True, max_depth = 70, max_features
= ‘auto’, min_samples_leaf = 4, min_samples_split = 3,
n_estimators = 1200.

Regarding feature importance, the same features as in the
10-class classification task were found to be most important,
although in a different order. The most important feature is
still the first blunder, followed by total number of blunders,
first mistake, game length, moves before castling, and mobility
(100). For the binary model the first blunder has an average
impact of around 3.2%. Table IV illustrates the average value
per bin for each of the six most important features.

C. Alternative Bin Configurations

Given the accuracy and speed of the RF classifier, we
expanded our system on the entire dataset (457464 datapoints).
Similarly to the tasks described in the previous section, our



TABLE IV
AVERAGE FEATURE VALUE PER BIN, IN A BINARY CLASSIFICATION TASK

USING THE RF CLASSIFIER.

Feature
/ Bin

First
Blunder

First
Mistake

Moves
Before

Castling

Total
Blunders

Mobility
(100)

Game
Length

1 10.81 6.12 6.32 3.66 -8.51 30.23
2 11.94 6.85 7.39 3.33 -3.65 32.20
3 12.76 7.28 7.94 3.16 -1.94 33.37
4 13.08 7.56 7.97 3.05 -0.82 33.63
5 13.74 7.88 8.22 2.96 0.01 34.60
6 14.04 8.26 8.23 2.84 1.15 35.02
7 14.50 8.55 8.28 2.71 1.74 35.63
8 14.93 8.93 8.35 2.60 2.97 36.22
9 15.50 9.47 8.46 2.51 3.61 37.01

10 15.78 10.43 8.32 2.21 7.12 36.98

TABLE V
PREDICTION ACCURACY OF THE RF CLASSIFIER PER BIN WIDTH.

STARTING WITH GAMES FROM THE HIGHER- AND LOWER-MOST RATED
PLAYERS (BINS 1 AND 10) AND ITERATIVELY INCREASING THE RATING

RANGE WIDTH.

Bins considered 1 vs. 10 1-2 vs.
9-10

1-3 vs.
8-10

1-4 vs.
7-10

1-5 vs.
6-10

Accuracy 79.29% 74.44% 70.48% 67.21% 64.26%

TABLE VI
PREDICTION ACCURACY OF THE RF CLASSIFIER PER BIN WIDTH.

STARTING WITH GAMES FROM THE MEDIAN-RATED PLAYERS (BINS 5 AND
6) AND ITERATIVELY INCREASING THE RATING RANGE WIDTH.

Bins considered 5 vs. 6 4-5 vs.
6-7

3-5 vs.
6-8

2-5 vs.
6-9

1-5 vs.
6-10

Accuracy 51.65% 54.68% 57.28% 60.36% 64.26%

dataset in two classes (high- vs. low-rated players) and starting
at the extreme ends (bins 1 and 10) we performed 10-fold
cross validation tasks, iteratively increasing class width. Table
V shows the accuracy of the RF model under this setup.

Alternatively, we designed a different configuration where
classification tasks started at the two middle-most bins (5 and
6) and iteratively more data was added towards the extreme
ends of the dataset (5-4 vs. 6-7, 5-3 vs. 6-8, etc.). This
configuration ensures that the two classes will always contain
“neighbouring” datapoints, in terms of player rating. Table VI
shows the accuracy of the RF classifier under this setup. We
observe that the initial accuracy when only bins 5 and 6 are
considered is only marginally above chance (51%), reaching a
maximum of 64% when each of the two classes contains 50%
of the entire dataset. We assume that the overall low accuracy
observed in this configuration is caused by the similarity in
playstyle of players that belong to the middle bins of the
dataset.

D. Considering More Games

The results mentioned above were all extracted based on
a single unknown game. Intuitively, we expect prediction
accuracy to increase when more than one games (of the same
player) are considered in the test set. To achieve this, we
simply average the feature and rating values over N games.

Three separate tasks were run using the RF model, to test this
hypothesis for N = 5, 10 and 20 games. With an average of
5 games, the accuracy for the lowest and highest rated bin
went up to 91.1%. The accuracy based on the same bins but
averaged over 20 games even went up to 96.5%. Respectively,
the accuracy of the 10-class RF classifier reached 25.1% based
on the average of 20 games.

V. DISCUSSION

This paper presents a novel study towards the predictive
modelling of chess player rating by analysing a single game
played. The models presented were based on a total of 30
features, deriving from fundamental chess theory and state-
of-the-art chess engine evaluation. The main results show that
the highest- and lowest-rated players can be distinguished with
fairly high accuracy; however, the closer the rating brackets
considered for classification, the lower the accuracy observed.

An important contribution of this study is the set of features
that was used for the encoding of chess games. Most impor-
tantly, Table IV illustrates that the most important features in
a binary classification task derive both from engine evaluation
and established chess theory. Taking a closer look, we can
conclude that the set of features we have employed leads
to understandable and quantifiable explanations of gameplay
patterns and its effect on player rating. It is expected that
higher rated players make less mistakes and blunders than
lower rated players. Beyond the obvious, it is notable to see
that higher rated players tend to castle later in the game
and focus a lot more on the mobility of their pieces. These
observations could be used to analyse one’s own patterns of
gameplay and ultimately become a better chess player.

Furthermore, even though our models do not perform at
a satisfactory level across all rating brackets, such a system
could be used to position new players in already existing
pools, even before the new players start competing. In the
present paper, our models are built on Lichess’s database, but
depending on the availability of data, this system could be
adapted to work on any pool of players.

This study does not come without limitations; we acknowl-
edge that a limited set of 30 features cannot produce gen-
eralisable, high-fidelity results. Allegedly, IBM’s Deep Blue
was implemented using a set of 8000 features [9]. Therefore,
the existing feature set can only constitute a pilot study and
requires further exploration. The addition of more detailed
features could not only increase the overall accuracy of the
system, but further boost the explainability of the predictions
in terms of gameplay patterns. Moreover, having achieved
a maximum accuracy of 79.3% (when considering extremal
rating bins), our models can only be considered moderately
reliable. For a system such as the one proposed in this study
to be commercially used as a player rating estimator or even a
cheating detector, the overall accuracy needs to be significantly
increased.

Lastly, since this first study yielded promising results, the
dataset should be enriched with more (and more recent) data.
Despite the rules not having changed for decades, chess is



an ever-evolving game; since casual and competitive players
have gained access to superhuman chess engines, novel rule-
breaking gameplay patterns have emerged. Furthermore, the
addition of more players to the existing dataset would not only
lead to more robust results, but could also potentially increase
the rating ranges of the proposed bins.

Future analyses could shift towards studying specific time
controls separately, as we expect players who play shorter
(in terms of total time available) chess games to base their
playstyle more on intuition than deep analytical thinking.
Moreover, depending on the feasibility constraints, studies like
this could be transferred to the deep learning domain; neural
networks have been proven to work exceptionally well in the
game of chess.

VI. CONCLUSION

To conclude, we have shown that traditional machine
learning algorithms can be employed to model and predict
chess player rating based on a single game. Specifically, a
Random Forest classifier was capable of predicting a player’s
chess rating bin with a maximum of 79.3% accuracy when
only the lowest- and highest-rated players were considered.
Increasing the rating bin width did cause a consistent decrease
in classification accuracy.

For the purposes of this study, we have presented a set of 30
features through which we encode and analyse chess games.
Several of these features contribute towards an explainable
model of gameplay behaviour with respect to player rating.
Systems such as the one proposed in this paper can identify
patterns indicative of a specific skill level, and could be used to
both improve the matchmaking accuracy of new players within
an existing pool of players and facilitate the improvement of
chess gameplay.
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