
Dynamic Scripting with Team Coordination

in Air Combat Simulation

Armon Toubman
1,2

, Jan Joris Roessingh
1
, Pieter Spronck

2
,

Aske Plaat
2
, and Jaap van den Herik

2

1National Aerospace Laboratory,

Department of Training, Simulation, and Operator Performance

Anthony Fokkerweg 2, 1059 CM Amsterdam, the Netherlands

{Armon.Toubman, Jan.Joris.Roessingh}@nlr.nl
2Tilburg center for Cognition and Communication (TiCC), Tilburg University,

P.O. Box 90153, 5000 LE Tilburg, the Netherlands

{p.spronck, aske.plaat, jaapvandenherik}@gmail.com

Abstract. Traditionally, behavior of Computer Generated Forces (CGFs) is

controlled through scripts. Building such scripts requires time and expertise,

and becomes harder as the domain becomes richer and more life-like. These

downsides can be reduced by automatically generating behavior for CGFs using

machine learning techniques. This paper focuses on Dynamic Scripting (DS), a

technique tailored to generating agent behavior. DS searches for an optimal

combination of rules from a rule base. Under the assumption that intra-team co-

ordination leads to more effective learning, we propose an extension of DS,

called DS+C, with explicit coordination. In a comparison with regular DS we

find that the addition of team coordination results in earlier convergence to op-

timal behavior. In addition, we achieved a performance increase of 20% against

an unpredictable opponent. With DS+C, behavior for CGFs can be generated

that is more effective since the CGFs act on knowledge achieved by coordina-

tion and the behavior converges more efficiently than with regular DS.

Keywords: computer generated forces, machine learning, air combat

1 Introduction

Military organizations are increasingly using simulations for training purposes. Simu-

lations are cheaper, safer, and more flexible than training with real equipment in real-

life situations [1, 2]. In military simulations, the roles of allies and adversaries are

performed by computer generated forces (CGFs).

Traditionally, the behavior of CGFs is scripted [3]. Production rules—rules that

map conditions to actions—are manually crafted to suit specific (types of) CGFs. In

complex domains, such as that of air combat, this leads to complex scripts and re-

quires availability of domain expertise. These scripts then produce rigid behavior,

because it is impossible to account for all situations that CGFs might encounter during

simulations.

mailto:Jan.Joris.Roessingh%7d@nlr.nl

Artificial Intelligence techniques may provide a solution by automating the process

of generating CGF behavior. Automation bypasses the requirement of expertise avail-

ability and shortens the time needed to generate the behavior. Various efforts have

been made at realizing automatic generation of CGF behavior [4, 5].

At the National Aerospace Laboratory (NLR) in the Netherlands, CGF research

aims to generate behavior for air combat training simulations. The focus of recent

work has been to generate behavior through the use of cognitive models, and optimiz-

ing these models with machine learning (ML) techniques such as neural networks and

evolutionary learning [3], [6]. In this paper, we diverge from the earlier approach of

using cognitive models by applying ML directly to the generation of behavior.

The envisaged new ML technique should satisfy at least four conditions to be suit-

able for our domain. First, the technique should provide transparent behavior models

as a result. Techniques such as neural networks are opaque in the sense that the result-

ing models are hard to relate to the behavior they produce. The new technique should

produce understandable models that are manually editable and reusable by training

instructors. Second, the new technique should be scalable to the domain of air combat

with team missions. The scope of the mentioned research with cognitive models [3],

[6] was not scalable, since it was limited to a single learning agent. Third, the chosen

machine learning technique should converge to practically usable behavior in a time-

ly fashion, to allow rapid development of new training scenarios. Fourth, the ML

technique must be able to learn robust behavior. Since the CGFs will be used for

training humans, the CGFs should have good performance against a variety of tactics.

Dynamic Scripting (DS) is a reinforcement learning technique specifically de-

signed to satisfy requirements similar as the ones stated above [7]. While DS has been

used with teams, no attention has been given to the explicit coordination of teams

using DS. In this paper, we present a technique based on DS called DS+C, which

enables team coordination using DS through direct communication between agents.

We compare the performance of a team using DS with and without coordination. The

main contributions of this paper are that we (1) present explicit coordination in DS

and (2) show, using an existing combat simulator, experimental evidence that coordi-

nation leads to faster convergence to optimal behavior.

The course of the paper is as follows. Section 2 describes the Dynamic Scripting

method. Section 3 describes our method of team coordination. Section 4 describes a

case study. Section 5 shows the results. Finally, the paper is concluded by a discus-

sion in Section 6 and a conclusion in Section 7.

2 Dynamic Scripting Method and Related Work

Dynamic Scripting is an online learning technique based on reinforcement learning. It

was introduced by Spronck et al. [7] to address certain requirements for adaptive

game AI in commercial video games, such as “easily interpretable results” and “rea-

sonably successful behavior at all times.” These requirements are also applicable in

the domain of military training, where quality controls such as transparent results and

robust behavior are important.

In DS, the learning process works as follows. The learning agent has a rule base

with behavior rules. The DS algorithm selects a set of rules through weighted random

selection. The selected rules together form a script that governs the behavior of the

agent during a trial with one or more other agents. After each trial, the weights of the

rules that were activated in the encounter are updated. The learning process is illus-

trated in Fig. 1.

In the original DS experiments [7] team behavior was a result of emergence, guid-

ed by a fitness function which rewarded team victories as well as individual success.

However, to make sure that CGFs act conforming to the training goals of a particular

air combat training simulation, more control over the team members’ actions is re-

quired. Such intensive control can be formalized by coordination rules.

There are two general methods of team coordination: centralized and decentralized

coordination [8]. With centralized coordination, one agent may direct the actions of a

team. With decentralized coordination, all agents in a team may influence each oth-

er’s actions by sharing information through some form of communication.

In this paper, we have chosen to implement decentralized control, because of its

straightforward implementation. In terms of DS, decentralized control translates to

each agent having their own rule base with its own weights and generated scripts.

Coordination is achieved through communication. However, adding communication

to multi-agent systems in general is not trivial [9]. For this reason, we attempted to fit

the communication (and therefore also the coordination) explicitly into the DS mech-

anism.

3 Dynamic Scripting with Team Coordination

We implemented team coordination in DS through communication between agents,

resulting in a technique which we called DS+C. In brief, the technique works as fol-

lows. Each agent starts with certain rules in their rule bases that are activated when

particular messages are received. Whenever an agent activates a rule, it sends a mes-

sage to its teammates describing its actions. The description of actions should not be

Fig. 1. Dynamic Scripting in the context of two learning agents in the air combat domain.

too narrow; otherwise no match will occur during trials. The DS+C algorithm decides

which actions in response to the messages are valuable.

In more detail, the communication scheme consists of three parts. The first part is

an addition to existing behavior rules: each rule, when activated by an agent a, now

also sends a message from agent a to every agent b in the same team. This message

contains the nature of the actions described by the rule. The second part is a new

component for the agents. Agent b stores the messages received during the activation

of rules by its teammates until b has processed its own rules. The third part handles

the processing of the received messages. For each agent, rules (i.e., the ‘coordination

rules’) are added to its rule base that will lead to new behavior after aforementioned

messages have been received. Together, these parts form a robust communication

system that will remain functioning even when the recombination of behavior rules

detects conflicting messages. The communication principle is shown in Fig. 2.

It must be emphasized that the form of coordination as described above is com-

pletely rule-based. The coordination rules undergo the same selection process as all

other behavior rules. In other words, by expressing the coordination as rules, DS+C

will learn which messages are relevant and how they should be acted upon. The rule

selection part of the DS+C algorithm will include or exclude a subset of these coordi-

nation rules in scripts based on their added value.

4 Case Study and Experimental Setup

In order to test the suitability of the approach, it has been applied in the domain of air

combat. In this domain, agents must exhibit realistic tactical behavior in order to in-

crease the value of simulation training

for fighter pilots.

 We have taken a ‘two versus one’

combat engagement scenario as our

testing ground. The scenario is illustrat-

ed in Fig. 3. Two ‘blue’ fighters (virtual

pilots controlling fighter planes), i.e., a

‘lead’ together with its ‘wingman’ at-

tempt to penetrate the enemy airspace.

In more detail, the ‘blue’ formation

seeks an engagement with a ‘red’ fighter

that defends a volume of airspace, by

Fig. 3. Diagram of the scenario used in the

case study. The ‘blues’ (left) fly towards the

‘red’ (right). Red is flying a CAP.

Fig. 2. Illustration of the communication applied in DS+C. Messages sent by one agent

trigger rules in another agent.

flying a so-called Combat Air Patrol (CAP) pattern. The ‘blue’ mission is considered

successful (a win) if ‘red’ is eliminated, and is considered unsuccessful (a loss) if one

or both of the ‘blue’ aircraft are eliminated, after which the ‘blue’ mission will be

aborted. ‘Rules of Engagement’ for the ‘red’ fighter dictate that it will intercept fight-

er aircraft that fly in its direction.

The behavior of the ‘blue’ agents is governed by scripts generated by the newly

implemented DS+C. The rule bases of the ‘blue’ agents contain three sets of rules.

The first set consists of default rules. The default rules define basic behavior, on

which the agents can fall back if no other rules apply. The rules are included in every

script, and their weights will not be changed by the DS+C process. The rules also

define the ‘missions’ of the agents; for instance, the ‘blues’ have default rules that let

them fly to ‘red’ in formation, while ‘red’ has default rules that let it fly its CAP. The

second set consists of general rules for air combat. These rules are based on domain

knowledge, although highly simplified to illustrate the principles. Two instances are

‘if I see an enemy on my radar, I lock this enemy with my radar’ and ‘if the enemy is

locked by my radar, I fire a missile’. The third set consists of coordination rules. In

the case of DS+C, these are the rules that produce behavior in response to the recep-

tion of certain messages. However, in the case of regular DS, these rules are ‘filler’

rules; rules that cannot be activated and therefore produce no behavior. These ‘filler’

rules were added to keep the sizes of the rule bases constant between the DS and

DS+C, thus providing a fair comparison. The scripts generated by DS+C consist of 6

rules, to which the default rules were added. All rules started with a weight of 50. In

total, the rule bases had 31 rules each.
1

The ‘red’ agent used three basic tactics, implemented as three static scripts. The

three tactics are called Default, a basic CAP where ‘red’ fires on enemies it detects;

Evading, like Default but with evasive maneuvers; and Close Range, like Default but

only firing from close range. These three tactics each had alternative versions in

which ‘red’ would start the engagement from flying the CAP in the clockwise direc-

tion, rather than the counter-clockwise direction. To test whether the ‘blues’ would be

able to learn generalized behavior, ‘red’ was given a composite tactic that consists of

the three basic tactics plus their alternative versions. With this seventh tactic (hence-

forth called mixed tactics) ‘red’ randomly selects one of the six basic tactics and uses

that tactic until it loses, at which point it would select a new tactic at random.

The performance of the ‘blues’ in a trial is measured using the following fitness

function:

 fitness = (0.25 + (0.5 ∗ 𝑤𝑖𝑛𝑛𝑒𝑟)) + 0.125 ∗ speed + 0.125 ∗ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (1)

In Eq. 1, winner is 1 if the ‘blues’ won, while it is 0 if they lost; speed is 1 minus

the ratio of the maximum duration of a trial and the actual duration to complete the

trial; and resources is a value between 0 and 1 based on the number of missiles spent

in the trial (the idea is to learn to defeat the opponent using the least number of mis-

siles). The fitness function is used to calculate the adjustments to the weights as fol-

lows:

1 Descriptions of the rules are omitted for brevity, but will be published in a technical report.

 adjustment = max(50 * ((fitness * 2.0) - 1.0), -25) (2)

The constants in these equations represent the balance between reward and pun-

ishment; for example, the constant -25 in equation (2) is the maximum negative ad-

justment after a loss, such that the associated rules with an initial weight of 50 still

have some selection probability in a subsequent trial.

With DS+C, agents have additional rules in their rule bases, which lead to a larger

number of possible scripts. In practice, this would lead to more trials needed to con-

verge to successful behavior. However, since additional rules provide more options to

the agents, there are also more possibilities to find optimal behavior, even in a rapid

way. Below, we compare the performance of DS+C to that of regular DS. To do so,

we first define performance in terms of efficiency (learning speed) and effectiveness

(combat results). We define effectiveness as the mean win/loss ratio during a learning

episode. It is difficult to define the efficiency of the DS algorithm, because it is hard

to establish precisely when stationary performance, i.e., no further improvement takes

place, is reached during learning. Both the DS algorithm and the agent environment

are stochastic by nature. Therefore it is unlikely that DS converges to a single winning

script. It is more likely that there is a set of sufficiently successful scripts available for

a variety of situations.

To cope with the inherent variations in the learning process, we define the Turning

Point (TP) measure TP(X) (based on Spronck’s TP measure [7]) as the trial after

which the ‘blues’ have won X percent of the last 20 trials. The window size (20 trials)

was chosen to allow for a sufficient number of evaluation points during a learning

episode (in this case 250 trials). X thus represents the chance that a winning script

will be selected at that point. An early TP now represents a more efficient learning

process, while a late TP represents a less efficient learning process.

Two series of experiments were run. In the first series, the ‘blues’ used the regular

DS algorithm. In the second series, the ‘blues’ used DS+C. ‘Red’ used one of the

seven tactics described in this section. The results of the experiments are described in

the next section.

5 Results

For each basic tactic used by ‘red’, results were averaged over ten learning episodes, a

learning episode representing the learning process of the ‘blue’ agents from zero to

250 trials (encounters). In the case of the mixed tactics, results were averaged over

one hundred learning episodes to reduce noise (and thus improving the chances to

observe a difference between DS and DS+C agents).

The average TPs at different percentages (50%, 60%, 70% and 80%) were calcu-

lated against each of the tactics of ‘red’. For the mixed tactics, the TPs were compared

using independent two-sample t-tests. Learning curves (Fig. 4) were created using a

rolling average (with a window size of 20 trials) of the win/loss ratio. Additionally,

the weights of all rules were recorded to check to what extent coordination rules were

selected by the DS+C agents.

Table 1 shows the TPs of DS and DS+C against the mixed tactics. DS+C agents

generally reached all TPs (50%, 60%, 70%, 80% wins) earlier than DS agents did.

Note that the standard deviation in TP generally has the same order of magnitude as

its mean. Independent two-sample two-tailed t-tests show that against the mixed tac-

tics at TP(50%), the mean TPs are achieved significantly earlier using DS+C (t =

3.85, p = 0.00016) at the a = 0.05 significance level. The same holds for TP(60%) (t =

3.60, p = 0.00039), TP(70%) (t = 3.60, p = 0.00039), and TP(80%) (t = 2.46, p =

0.015).

In contrast with the performance against opponents that employed mixed tactics,

TPs for DS+C agents were generally achieved later against the basic tactics. The

learning curve of DS and DS+C against the mixed tactics is shown in Fig. 4. Both DS

and DS+C agents seem to have passed a point of inflection after around 100 trials.

After the first 100 trials, DS and DS+C maintain a mean win/loss ratio of 0.53 and

0.63, respectively. The mean percentage difference between the learning curves is

20.3%, with DS+C agents clearly outperforming DS agents during the entire learning

process.

Log traces show that the coordination rules were selected and activated multiple

times. This means that according to the DS algorithm, the coordination rules had add-

ed value. Considering the final weights of the rules, it can be observed that some of

the coordination rules received high weights. The ‘blue lead’ favored one rule in par-

ticular, with a mean final weight of 178.6. This rule stated ‘if I receive a message that

my wingman is evading an enemy, turn approximately towards the enemy’. Interest-

Table 1. TPs of DS and DS+C against mixed tactics (averaged over one hundred episodes)

and the basic tactics (aggregated results, ten episodes per tactic).

 TP(50%) TP(60%) TP(70%) TP(80%)

Tactics of ‘red’ DS μ σ μ σ μ σ μ σ

Mixed DS 83.8 78.1 94.5 78.9 110.5 78.4 129.9 79.1

Mixed DS+C 48.4 48.4 60.9 49.6 75.8 55.5 103.9 69.7

Basic (aggregated) DS 55.8 56.7 66.1 57.8 87.3 66.5 122.4 82

Basic (aggregated) DS+C 34.8 31.3 48 42.7 65 61.3 90.7 80.6

Fig. 4. Rolling mean (window size twenty) of win/loss ratio of the 'blues' against mixed

tactics, with DS and DS+C. Ratios are averaged over one hundred learning episodes.

0.2

0.4

0.6

0.8

0 50 100 150 200 250

M
ea

n
 w

in
/l

o
ss

 r
at

io

Trial

DS

DS+C

ingly, the ‘blue wingman’ mainly favored two rules, with mean final weights of 103.8

and 106.6. Both rules made the ‘wingman’ perform an evasive action when it received

a message that the ‘lead’ was trying to avoid being detected by ‘red’.

In the case without coordination, the rule that stood out most was the so-called

‘beam’ maneuver (flying perpendicular to an enemy’s radar to avoid detection). This

rule received high weights from the ‘blue lead’ (386.7) and the ‘blue wingman’

(323.5). A final interesting observation is that in all cases the agents preferred firing

from a greater distance. This had the obvious advantage that it would be hard for ‘red’

to hit a ‘blue’, but would also diminish the chances of the ‘blues’ to make a hit on red.

6 Discussion

In this paper, we have presented a method for team coordination through communica-

tion using DS, called DS+C. The method was tested in a (simulated) air combat envi-

ronment, in which a team of two learning agents had to learn how to defeat an oppo-

nent. Over a large set of experiments, DS+C showed clear advantages over traditional

DS for multi-agent reinforcement learning. Throughout the learning process of 250

trials (an episode) DS+C agents won more often than DS agents from opponents that

frequently change their tactics. On the basis of a decentralized coordination scheme,

DS+C agents are able to develop more successful and more robust tactics against a

less predictable opponent. Coordination in multi-agent systems is an extensively re-

searched topic, with many issues and learning opportunities [9]. From the literature

we know that other authors have found that the addition of coordination to a multi-

agent system does not automatically lead to increased performance [10].

To judge the relative efficiency of DS and DS+C, we defined the TP(X) measure,

based on the TP measure from [7]. DS+C agents reached the TP(X) at 50%, 60%,

70% and 80% significantly earlier than regular DS did, against an opponent with

mixed tactics. From the fact that DS+C reached these ‘milestones in learning’ earlier

than DS did, we may conclude that DS+C agents learn more efficiently than DS

agents.

Looking at the learning curves shown in Fig. 4, it can be observed that DS+C

agents generally maintain a higher win/loss ratio than DS agents throughout the learn-

ing process, against opponents that employed mixed tactics. Therefore, we may provi-

sionally conclude that in this case, DS+C agents are not only more efficient in their

learning process, but also more effective than DS agents, after training.

The higher performance of DS+C should probably be attributed to the addition of

more evasive rules to the rule bases. Since the ‘blues’ would lose if only a single

‘blue’ was hit, cautious behavior was rewarded. This can be seen in the high weights

that several evasive rules received. Also, because the coordination rules were proven

to be valuable, it is also easy to explain the faster convergence on optimal scripts,

since the DS+C agents simply had more good options available. However, the coordi-

nation rules were not intentionally biased towards evasion, and it remains possible

that more aggressive rules would have a similar effect.

Against the opponent with a basic tactic, the picture is slightly different. As can be

seen in Table 1, DS+C agents also reached the TPs earlier against opponents with a

basic tactic. However, the TPs against the basic tactics were achieved relatively early

for both DS and DS+C. Surprisingly, against the Close Range tactic, DS achieved

earlier TPs than DS+C did. We hypothesize that if DS was able to rapidly find opti-

mal behavior against this tactic of ‘red’, then the additionally included coordination

rules for DS+C only hindered the convergence to successful rules, resulting in later

TPs. Additionally, there seemed to be a trend of both DS and DS+C having later TPs

against the alternative (reverse direction) versions of tactics (see Section 4). Addition-

al experiments, in which the formation of the ‘blues’ was mirrored, also led to later

TPs, when the opponent employed a non-reversed tactic. While this can be considered

an artefact, it is also an indication that the spatial configuration of a formation of co-

operating aircraft is a relevant factor in air combat.

Table 1 shows that the means and standard deviations of the TPs generally had the

same order of magnitude. Each learning episode starts with a rule base in which each

rule has an equal weight. There are nevertheless two sources of variance when aver-

aging TPs over episodes. The first source is the stochastic sampling of the rule base

by the DS algorithm. The second source is stochastic variation in the simulation envi-

ronment (e.g., radar detection probability and missile kill probability). These sources

cause stochastic variations in win/loss ratio and hence stochastic differences between

episodes. Note that the first source of variance is non-stationary, in the sense that the

distribution of weights in the rule base continuously changes during an individual

episode, and eventually diminishes after a subset of relatively successful rules are

identified by the algorithm.

The high weights of both general and coordination rules promoting ‘evasion’ were

likely caused by the fact that ‘blue’ would lose the trial if only one of the two ‘blues’

was hit. Thus, ‘blue’ was relatively vulnerable. At the same time, the two ‘blues’

together had more missiles at their disposal than red, thereby promoting the ‘distant

firing’ rules as well, overall resulting in a low risk strategy.

7 Conclusions and Future Work

From the experimental results given above we may conclude that the difference in

performance against mixed tactics is the most interesting outcome: it shows that

DS+C agents are better able to generalize their behavior against unpredictable ene-

mies than DS agents.

The next step is to expand the scenario and investigate the use of DS+C with more

agents, both friendly and enemy. Further work could investigate how existing exten-

sions to DS, such as performance enhancements [7] and extensions leading to variety

in the learned behavior [11] would interact with DS+C. In the future it could also be

investigated which communication is most effective against specific enemy tactics, or

if a centralized coordination method would offer any benefits over the currently used

decentralized method. Research in these directions will further improve CGF behavior

and the effectiveness of training simulations.

Acknowledgments

LtCol Roel Rijken (Royal Netherlands Air Force) provided the first version of the

simulation environment used in this work. The authors also thank Pieter Huibers and

Xander Wilcke for their assistance with the simulation environment.

References

1. Laird, J.E.: An exploration into computer games and computer generated

forces. Eighth Conference on Computer Generated Forces and Behavior

Representation (2000).

2. Fletcher, J.D.: Education and training technology in the military. Science.

323, 72–5 (2009).

3. Roessingh, J.J., Merk, R.-J., Huibers, P., Meiland, R., Rijken, R.: Smart

Bandits in air-to-air combat training: Combining different behavioural models

in a common architecture. 21st Annual Conference on Behavior

Representation in Modeling and Simulation. , Amelia Island, Florida, USA

(2012).

4. Benjamin, P., Graul, M., Akella, K.: Towards Adaptive Scenario

Management (ASM). The Interservice/Industry Training, Simulation &

Education Conference (I/ITSEC). pp. 1478–1487. National Training Systems

Association (2012).

5. De Kraker, K.J., Kerbusch, P., Borgers, E.: Re-usable behavior specifications

for tactical doctrine. Proceedings of the 18th conference on behavior

representation in modeling and simulation (BRIMS 2009). pp. 15–22. ,

Sundance, Utah, USA (2009).

6. Koopmanschap, R., Hoogendoorn, M., Roessingh, J.J.: Learning Parameters

for a Cognitive Model on Situation Awareness. The 26th International

Conference on Industrial, Engineering & Other Applications of Applied

Intelligent Systems. pp. 22–32. , Amsterdam, the Netherlands (2013).

7. Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., Postma, E.: Adaptive game

AI with dynamic scripting. Mach. Learn. 63, 217–248 (2006).

8. Van der Sterren, W.: Squad Tactics: Team AI and Emergent Maneuvers. In:

Rabin, S. (ed.) AI Game Programming Wisdom. pp. 233–246. Charles River

Media, Inc. (2002).

9. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning

perspective. Auton. Robots. 8, 345–383 (2000).

10. Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic

systems. Auton. Robots. 1, 27–52 (1994).

11. Szita, I., Ponsen, M., Spronck, P.: Effective and Diverse Adaptive Game AI.

IEEE Trans. Comput. Intell. AI Games. 1, 16–27 (2009).

