USING GENETIC ALGORITHMS TO DESIGN NEURAL REINFORCEMENT
CONTROLLERS FOR SIMULATED PLANTS

P.H.M. Spronck and E.J.H. Kerckhoffs
Delft University of Technology
Faculty of Technical Mathematics and Informatics
Zuidplantsoen 4, 2628 BZ Delft, The Netherlands
E-mail: p.spronck@inter.nl.net (Spronck)
eugene@kgs.twi.tudelft.nl (Kerckhoffs)

KEYWORDS

Control systems, genetic algorithms, neural networks,
reinforcement control, dedicated computer software.

ABSTRACT

In production industry often highly non-linear
processes (plants) are encountered which need to be
controlled. In this paper, attention is focused on neural
reinforcement control of simulated plants.
Reinforcement control uses an evaluation of the
performance of the controller in a practical situation to
adapt the controller to work better. The design of a
neural controller in a reinforcement situation is not a
trivial task. A method is discussed to design such
neural controllers using genetic algorithms. To test the
viability of the approach a specific software
environment has been built, which enables performing
experiments with many different genetic algorithm
configurations. As an illustrative example, the design
of a controller for a bioreactor simulation is discussed.

INTRODUCTION

In production industry and modern business frequently
there are processes, often called plants, which need to
be controlled. Often the controller function is taken by
a human being or a mechanical controller. However,
mechanical controllers are only suitable for simple
situations, and human beings are expensive and cannot
always react quickly enough in situations where large
numbers of parameters or fast-changing processes are
concerned. In modern control, plants are computer
controlled. The control software can be based on
numerical procedures, traditional artificial intelligence
techniques (reasoning systems), neural networks and
fuzzy logic techniques.

In this paper we consider neural control, that is, control
in which neural networks are involved. In neural
control, it is tried to exploit the learning capabilities of
neural networks. The design and training of neural
networks is normally not an easy task. If a good
conventional or neural model of the plant to be
controlled is available, then there are ways to construct
a good neural controller for the plant concerned

(Jarmulak et al. 1995b). However, such a model can
not always be built easily, and sometimes not at all. In
that case an option that remains is to use reinforcement
control, that is, to develop the neural controller
according to the success, or the lack of success, of the
performance of this controller in a practical situation.
No plant model is needed in this case.

Genetic algorithms are search algorithms based on the
principles of natural selection and natural genetics.
They might be particularly suited to develop neural
reinforcement controllers; this is studied in the research
reported in this paper. Up to now, there has not been
much research in the application of genetic algorithms
for the design of neural controllers, and the question of
the viability of this approach is still open. The
approach is promising, though, so more research in this
direction is certainly encouraged. For this kind of
research many experiments need to be done. A
dedicated software environment has been developed to
perform, in a flexible way, a large number of different
experiments in this respect.

The paper first gives a short introduction to genetic
algorithms. This is followed by a discussion of neural
control and how genetic algorithms can be applied to
the design of neural reinforcement controllers. Then a
software environment especially developed to perform
the necessary experiments is presented, and as an
illustrative application example the development of a
neural reinforcement controller for a bioreactor
simulation is discussed.

GENETIC ALGORITHMS

Genetic algorithms are search algorithms based on the
principles of natural selection and natural genetics.
They have been invented by John Holland, who in
1975 published his book Adaptation in Natural and
Artificial Systems (Holland 1992). It took years before
genetic algorithms became a major interest in the
artificial intelligence community, but since the early
’90s they have got much attention and have become
widely accepted as a powerful tool to handle complex
optimisation problems.

While most optimisation techniques start with one

potential solution to a problem, and adapt that solution
to ultimately get it to an optimum, genetic algorithms
work with a set of potential solutions to the problem at
hand. This set is called a population, and the potential
solutions in the set are called individuals. The
individuals are not simply stored in the population;
they are encoded. For instance, an individual may be
translated by some method to a binary string. Such a
coded individual is also called a chromosome. One
character of a chromosome is called a gene, and a gene
value is called an allele. Each individual in the
population has been given a fitness measure, which
indicates how well this individual performs in solving
the problem, in relation to the other individuals in the
population.

To get new and hopefully fitter individuals, the genetic
algorithm applies genetic operators to individuals
which are selected from the population. A genetic
operator takes one or more parent individuals, and
performs some action on them to produce one or more
new child individuals. For example, the mutation
operator takes one individual as parent and makes a
few changes in it to produce a child, while the (one-
point) crossover operator takes two parents, cuts them
both in two parts, and exchanges the tails to produce
two children (see figure 1).

mutation: crossover:
parent. [10110100010¥1101| parent 1: $0110100010(1101
child: IIOHOH.OO‘O@IIO' | parent2: (1101011110001000
child 1: T 0010
child 2:

Figure 1: Examples of two genetic operators.

The selection of the parent chromosomes normally
goes according to the fitness rates: the fittest
individuals have a greater chance of being selected to
procreate than the less fit individuals. Newly generated
individuals either get inserted into the population,
replacing other individuals, or are placed in a new
population which will eventually replace the old
population. The production of new individuals, called
the evolution process, continues until some predefined
goal is reached, most commonly until a maximum
predetermined number of new individuals has been
produced. At that point, the fittest individual in the
population is considered to be the sought solution to
the problem.

At first glance, genetic algorithms seem to be a
completely random process, but in practice they work
quite well provided the right configuration (population
size, genetic operators, replacement policy, etc.) is
chosen. Strong points of genetic algorithms are that
they are robust, i.e. they work well in many different

environments and on many different problems; that
they search for a global optimum where most other
techniques only lead to a local optimum; and that they
need no more than a fitness measure to work. They are
relatively slow, but since they are inherently parallel it
is easy to speed them up if more processors are
available. A weakness of genetic algorithms is that
they are not guaranteed to lead to an acceptable
solution, not even to a mediocre one. Experience in the
design of the genetic algorithm and a sound analysis of
the problem domain are certainly needed to insure that
the genetic algorithm will indeed do what it is expected
to do.

Those interested in more details of genetic algorithms
are referred to the excellent introduction to the field by
David Goldberg, Genetic Algorithms in Search,
Optimization & Machine Learning (Goldberg 1989).

NEURAL CONTROL

In this paper we focus on the control of (simulated)
plants with the use of neural networks (in the following
with “plant” is frequently meant “simulated plant”). A
plant is a process which maps an input to an output.
The plant may have internal states, i.e. the plant’s
output does not only depend on the current input but
also on the input’s and plant output’s history. The input
to the plant is presented by a controller, which should
get the plant to produce a specific predetermined
output. Such a target output is called a setpoint. The
controller receives the plant output to guide the
determination of the plant input needed to reach the
setpoint (see figure 2).

setpoint
— output
—

controller plant

Figure 2: Plant control.

In the last decades, often straightforward computer
programs have been employed as controllers. The more
complex the plant becomes, the more difficult it is to
design a good computer controller. Furthermore, really
good computer controllers have mostly been developed
to control linear systems. In practice, however, plants
are rarely linear. Of the Al techniques which have been
used in control design, neural networks have shown
some promise. Neural networks have the ability to
learn a non-linear function, and can therefore be used
to control non-linear plants. There are basically two
ways in which neural networks can be employed in
control systems. First, the neural network can be
trained to be the plant controller itself. Second, the
neural network can be trained to be a model of the
plant (called a neural identifier), and this is then

properly incorporated in the control system.

The identifier-based approach has been studied by
many researchers, a.0. by Jarmulak using his
NeuroControl Workbench (Jarmulak 1994). He
considers two kinds of models to create an identifier:
forward and-inverse. Inverse models are presented with
a plant output, and react with the plant input needed to
get that output. Since that is exactly what we wish a
controller to do, an inverse model is theoretically equal
to a controller. However, a good inverse model of a
plant is far more difficult to build than a good forward
model. Moreover, a direct inverse controller is not
stable in practice and therefore useless. Forward
models can be used in several configurations, of which
the most successful is the so-called model-based
predictive control, in which a plant identifier is used to
improve plant input and a neural controller is trained
on-line with these improvements.

In the aforementioned NeuroControl Workbench
neural models are trained with backpropagation.
Backpropagation works with a training set that consists
of a number of plant inputs with the corresponding
plant outputs. The neural network is then trained to
produce the outputs when presented with the inputs. As
stated before, the problem is that a plant will in general
not react in one unique way to some input, while a
training set can only attach one output to an input. To
deal with this problem, the controller input consists of
not only the desired plant output, but also of the
current plant output and of some of the plant input’s
and output’s history. In this way a static
backpropagation network can learn a dynamic input-
output relation. This strengthens the approach
considerably, but it is of course not guaranteed that an
acceptable plant model can always be designed.

An alternative control method is to use a neural
network as the controller itself, and to train it with
reinforcement learning. Reinforcement learning by
definition does not make use of a plant model or a
training set. Instead, observation of the performance of
the controller in practical situations is used to adapt the
controller to perform better. This is called
reinforcement control. The design of a neural network
as a controller is actually an optimisation problem. In
reinforcement control the only information we have to
adapt the neural controller concerns evaluations of the
performance of the controller. Since genetic algorithms
are used for optimisation, and since they need no more
than a fitness evaluation to do the job, they seem to
provide a viable approach to the design of neural
controllers in a reinforcement situation.

Note that genetic aigorithms could also be used to
design a neural identifier which is then used in the

controller. However, there are several good
conventional techniques for this purpose, so genetic
algorithms are not a logical first choice in this respect.
Also note that genetic algorithms are only suitable for
off-line training and are therefore dependent on a good
plant simulation.

GENETIC ALGORITHMS AND NEURAL
CONTROLLERS

A lot of research has been done concerning the use of
genetic algorithms to optimise neural networks. This
certainly does not mean that researchers are unanimous
about what makes a genetic algorithm suitable for this
task. Virtually every aspect of these genetic algorithms
is subject for debate. For instance, concerning the
chromosome encoding, some researchers prefer the use
of real values for the connection weight encoding,
while others defend the use of binary encoded weights.
A lot of the points of discussion stem from the problem
of so-called competing conventions (more aptly named
the structural/functional mapping problem). The
problem of competing conventions concerns the fact
that one particular mapping from input to output can be
encoded in several different ways. For instance, in a
layered feedforward neural network, the nodes in one
layer (including their connections) can be exchanged,
leaving the neural network functionally the same, but
structurally different. For an example, see figure 3.

Figure 3: Competing conventions: two structurally different but
Sfunctionally equivalent neural networks.

The possibility of the occurrence of competing
conventions leads to a vast increase of the size of the
solution space, which may lead to an increase of the
time needed for the evolution process. Moreover,
competing conventions also virtually nullify the
beneficial effect of the crossover operator. This is
because for the crossover operator to be executed in a
useful manner on two chromosomes functionally
equivalent neural nodes should be encoded in the same
location on those chromosomes. For example, suppose
we have devised an encoding mechanism in which
every neural node is encoded as one gene of a
chromosome, and that the optimal neural network is
encoded as ABCDEF. Suppose there are two quite fit
neural networks in the population, encoded as
ABCDEX and XBCDEF. Performing the crossover
operator on these two chromosomes has a great chance
of resulting in the optimal chromosome. However, if
competing conventions are allowed in the population,

the second neural network could, for instance, be
encoded as FEDCBX. In this case, use of the crossover
operator would not result in the optimal chromosome,
but instead would very probably produce children
which are less fit than their parents. To solve the
problem of competing conventions, different
researchers use different approaches. Some just ignore
the problem, some advocate the use of a small
population combined with a high mutation rate, some
use special genetic operators, and some rearrange the
structure of one of the chromosomes before the
crossover is executed.

For neural controller evolution in a reinforcement
control situation, another aspect is added to the genetic
algorithm design, namely how the test run, executed to
determine the fitness of a neural controller, should be
performed. Very little research has been done in this
area. Whitley is one of the few researchers who has
examined the subject of neural controller evolution in a
reinforcement environment (Whitley et al. 1993). As a
test plant he uses a pole balancing system. This is a
system which consists of a cart on a rail, on which a
pole rests. The pole can fall to the left and right. The
cart is controlled by applying a force, and it is the
objective of the controller to keep the pole from falling
(see figure 4). The reinforcement aspects of the pole
balancing controller evolution are easily determined.
The plant fails if the pole falls, therefore the fitness is
determined by the length of time the controller can
keep the plant from failing. This kind of fitness is
called time-until-failure based fitness. A maximum test
run length needs to be set, and the controller is
considered to be perfect if the pole remains balanced
for that amount of time. The only remaining
reinforcement aspect is the initial plant state used in the
test run. Whitley starts by placing the cart at one end of
the rail, and the pole leaning over at some specific
angle to the other side of the rail.

Figure 4: The pole balancing system. The state of the system is
described by the pole angle O, the angular velocity ©' the cart
position p, and the cart velocity p'.

There are many plant types for which the controller
cannot be evolved with time-until-failure-based fitness.
For instance, a trolley is a plant which consists simply
of a cart on a rail, and the controller has to direct the

cart to specific positions on that rail. The plant fails if
the cart drives off the rail, but just keeping the plant
from failing is not sufficient for the controller to be any
good. The controller should also minimise the distance
between the cart position and the setpoint position. A
straightforward way of implementing fitness
determination for controllers for plants like the trolley
is to use the mean square error (MSE) over the test run,
wherein the error is defined as the difference between
the current plant output and the setpoint for this output.
This is called MSE-based fitness determination, and in
this case the inverse fitness is used, meaning that the
controller which has the lowest MSE is considered to
be the most fit. If the plant does not fail during the test
run (that is, if the cart does not drive off the rail), the
inverse fitness is simply the sum of the squares of the
error for each time step, divided by the number of time
steps. If the plant does fail, this situation can be
handled in several ways. We can simply reset the plant
and continue the run; or we can award the maximum
error for all the remaining time steps; or we can award
the MSE for the time steps until the failure for the rest
of the run. In the latter case, it would be wise to also
set some penalty on premature failure.

Very little research has been done in the subject of
genetic algorithm based evolution of neural controllers
in a reinforcement environment, and most of it is
concentrated on controllers with time-until-failure
based fitness. The handful of papers published about
the subject are, however, optimistic about the
possibilities and results. Because this research is
mainly of experimental nature (there is little theory
about what makes a genetic algorithm work well), it
would benefit from the availability of a dedicated
software environment in which in a flexible way large
numbers of genetic algorithm configurations can be
tested on several different plant types. Such a software
environment has been developed at Delft University of
Technology (Spronck 1996). It is described in the next
section.

THE SOFTWARE ENVIRONMENT
“ELEGANCE”

“Elegance”, which is an acronym for Engineering
Laboratory for Experiments with Genetic Algorithms
for Neural Controller Evolution, is a home-made
software environment constructed to experiment with
genetic algorithm configurations for the design of
neural controllers, particularly in a reinforcement
control situation. Elegance’s view on the neural
controller evolution process is shown in figure 5. The
controller directs the plant with a control signal. This
results in a plant output, which is sent back to the
controller and to a history entity. The history entity can
provide the controller with the last » plant outputs

through so-called tapped-delay lines (TDLs). A
setpoint generator indicates to the controller which
desired plant output should be produced. The structure
consisting of the plant, controller, setpoint generator
and history entity is called the control loop.

genetic
algorithm

controller controller
installation performance result
setpoint setpoint input
generator controller plant
TDLs
history plant output

Figure 5: The basic Elegance control structure.

The genetic algorithm contains a population of
controllers. The fitness of these controllers is
determined by placing them, one-by-one, into the
control loop, making the control loop run for a certain
length of time, and by examining the results of this test
run. The genetic algorithm generates new controllers
by applying genetic operators on parent controllers
selected from the population, determining the fitness of
these new controllers, and inserting them into the
population, replacing existing controllers. Since the
purpose of Elegance is to test many different genetic
algorithm configurations, there is offered a great
flexibility in the design of the genetic algorithm. In the
following we give a non-exhaustive list of Elegance’s
functionalities:

e Elegance supports both weight determination and
the combination of architecture design and weight
determination.

e Elegance supports both real valued chromosomes
(Whitley et al. 1993) and binary valued
chromosomes of fixed and variable length
(Maniezzo 1993).

e Elegance supports both time-until-failure-based
fitness (Whitley et al. 1993) and MSE-based fitness
determination. MSE-based fitness can be
configured to use a basic run length, which gets
increased until the change in MSE falls below a
certain threshold.

e Elegance supports several fitness scaling
techniques, like ranking (Goldberg 1989).

e Elegance supports a complexity penalty and a
premature failure penalty.

e Elegance supports a wide range of genetic operator
types, among which several kinds of weight
mutation, several kinds of connection presence
mutation, granularity mutation, several kinds of
crossover operators and the GA-simplex operator
(most genetic operators come from Montana and

Davis (Montana and Davis 1989), GA-simplex is
designed by Maniezzo (Maniezzo 1993), and some
operators have been designed specifically for
Elegance).

e Elegance supports Whitley’s adaptive mutation
technique (Whitley et al. 1993).

e Elegance supports Thierens’ treatment of
competing conventions (Thierens et al. 1993).

e Elegance supports several kinds of replacement
policies, like crowding (meaning that the individual
to be replaced is selected deterministically from a
randomly selected subset of the population)
(Goldberg 1989).

o Elegance supports feedforward neural networks,
layered feedforward neural networks and recurrent
neural networks as neural controllers. For
comparison, it also supports conventional PID
controllers.

e Elegance supports several different plant
simulations.

e It is easy to add new plants and new genetic
operators to Elegance.

For completeness, some of Elegance’s limitations
should also be mentioned:

e Elegance only supports direct encoding (meaning
that a neural network is always encoded to all its
details).

e The chromosome structure design is fixed.

e As yet, there is no combination of genetic
algorithms with a local optimisation technique
supported. Such a combination would make a
useful addition.

The object-oriented design of Elegance has been
inspired by the design of Jarmulak’s NeuroControl
Workbench (Jarmulak 1994). There are six basic
objects in the program. The object “project” contains
the five other objects: the plant, the controller, the
setpoint generator, the control loop display and the
genetic algorithm (the history entity is implemented as
part of the plant). These six objects can be defined and
maintained separately. After they have been defined,
an evolution run can be started, and when this run is
finished, the results can be examined by running the
best controller found.

CONTROLLING A BIOREACTOR
SIMULATION

Preliminary experiments done with Elegance included
the design of a neural controller for a pole balancing
system simulation and the design of a neural controller
for a trolley simulation. The pole balancing system,
however, was found to be so very simple to control,
that randomly generating neural controllers with five

hidden nodes would produce a good pole balancing
neural controller within a few hundred trials. This
means that almost any genetic algorithm configuration
would produce good results, and therefore that the pole
balancing system is not a very good test case to decide
if the application of genetic algorithms in neural
controller design is a promising technique. The trolley
was found to be easiest to control with a neural
controller with no hidden nodes at all, or at most one
hidden node. Although the evolution techniques
proved their worth by reducing neural networks with
more hidden nodes to neural networks with at most one
hidden node, this indicates that the trolley is also not a
very suitable system to test these genetic algorithm
based techniques.

Elegance does, however, contain more complex plants
in its plant base, from which the bioreactor simulation
was selected to perform the first really challenging
experiments. The bioreactor is a tank reactor
containing a biological cell mass in water, which feeds
on nutrient added to the tank, while water is drained
from the tank at a rate equal to the nutrient input flow.
The controller can adjust the flow rate. The objective
of the controller is to stabilise the cell mass and the
amount of nutrient in the tank at certain setpoints. The
following formulas describe the bioreactor:

N
c;—f=—Cw+C(1—N)e7
dN L
= 1—- y P
" Nw+C(1-N) BN

where C is the cell mass, N the amount of nutrient, w
the flow rate, B the cell growth rate and y the nutrient
consumption rate. The bioreactor is highly non-linear
and chaotic, and there are few stable setpoints (which
are setpoints for which the flow rate can remain
constant).

If our goal is to evolve a general neural controller for a
bioreactor, at first it seems logical to use a random
setpoint generator. However, it was decided to use a
setpoint generator that would switch between two
stable setpoints. The major reason not to use a random
setpoint generator is that it would introduce a large
amount of chance in the fitness determination process,
especially with such a chaotic plant, which might
obstruct the evolution process. This could mean that
the resulting neural controller can only be used for
those two setpoints. However, this is not necessarily
the case. If a general solution to the control problem is
easier to implement than a solution which can only be
used for the two selected setpoints, it is likely that this
general solution will be the one found by the genetic
algorithm. The bioreactor constants were set at 3 =

0.02 and y = 0.48. The two setpoints chosen were (C,
N) =(0.1207, 0.8801), which is stable with a flow rate
w = 0.75, and (C, N) = (0.2107, 0.7226), which is
stable with a flow rate w=1.2.

Elegance works with a predefined maximum number
of nodes in the neural network configuration, from
which it can remove hidden nodes, but to which it
cannot add more nodes. The needed initial network
configuration largely depends on the complexity of the
problem. The choice of the maximum number of nodes
should be made carefully. If it is too big, the evolution
process will take much longer than necessary. If it is
too small, the evolution process won’t succeed. For the
bioreactor, it was decided to choose a configuration for
which Jarmulak had already found it would evolve into
a good bioreactor identifier (Jarmulak 1995a). The
reasoning behind this decision was that for a model-
based controller the plant model is often by far the
most complex part of the controller, so the needed
identifier complexity could probably be about the same
as the needed controller complexity for Elegance. The
neural controller configuration was therefore set to:

« 8 input nodes, consisting of two setpoint nodes (the
desired cell mass and the desired amount of
nutrient), two plant output nodes (again, the cell
mass and the amount of nutrient), and two TDLs
(totalling four nodes: the previous plant outputs,
and the plant outputs before that).

e two hidden layers of 20 nodes each.

e 1 output node, the flow rate.

As activation function an arctangent was chosen with a
range of [-1,+1]. This configuration has a total of 580
possible connections, which makes the solution space
quite large indeed. The genetic algorithm configuration
was designed as follows:

e Encoding was done with real values for the
weights.

e Weight initialisation was done in a range of [-5,+5],
with a connection presence chance of 0.5 (meaning
that about 50 percent of all possible connections
would be initially activated in a neural network).

o Fitness determination was MSE-based, with
ranking as scaling technique. The basic run length
was set to 500 time steps (one time step equalling
0.1 simulated seconds), which would be
continuously increased with 100 time steps until the
change in MSE would have dropped below 0.02.
Premature failure is, at least in theory, not possible
with the bioreactor.

¢ Population size was set to 100.

e Elitism was applied (meaning that the best
individual in the population would never be
selected for replacement).

Elegance - [Exp B9: Bioreactor] e

Cell mass

Substrat concentration

Flow rate

Figure 6: A control loop of a bioreactor neural controller evolved with Elegance. This controller reaches an MSE of about 0.019. It consists of a
feedforward neural network with only seven hidden nodes. In the first two graphs, the ‘square’ lines indicate the setpoints, while the curves

indicate the actual values.

e Duplicate checking was performed (meaning that
the genetic algorithm would not allow duplicates in
the population).

e Viability checking was applied (meaning that the
genetic algorithm would not allow neural networks
in the population which have output nodes which
are not connected via some path to at least one of
the input nodes).

e A treatment for competing conventions was
applied.

As replacement policy crowding was applied.
Incest prevention was applied with three alleles
(meaning that to be allowed to be used as parents,
two chromosomes should differ by at least three
alleles).

The following genetic operators were used:

e Biased weight mutation, which changes 10 percent
of the weights of a parent chromosome within a
small range (Montana and Davis 1989).

e Node existence mutation, which either removes a
node completely or activates all connections to and
from a node (Spronck 1996).

e Connectivity mutation, which removes some
connections and adds others (Maniezzo 1993).

e One-point crossover, shown in figure 1.

e Nodes crossover, which creates a child
chromosome by copying repeatedly from a random
parent a node with all its incoming connections
(Montana and Davis 1989).

e Randomisation, which in effect generates almost
randomly new chromosomes, slightly based on an

existing chromosome. This operator is equal to
Whitley’s mutation operator (Whitley et al. 1993).

The experiment was performed on a Pentium 90 PC.
The evolution process needed a bit less than half-a-
minute to generate one controller, including the fitness
determination. This means that in a period of 24 hours
about 3000 controllers could be generated. After the
generation of 2000 controllers, the best controller
generated had an MSE of 0.025. The evolution was
interrupted at that point, and the controller was tested
in the control loop. The result was found to be a good
bioreactor neural controller, which could efficiently
direct the bioreactor to the defined setpoints, and keep
it there with a constant flow rate. The resulting neural
controller had a configuration with two hidden layers,
with 19 nodes in the first and 10 nodes in the second
layer.

This was the result of the first experiment. More
experiments were performed. Although the genetic
algorithm used in the first experiment was found to be
a good choice (small changes in the algorithm almost
always harmed the evolution run), the initial neural
network configuration was found to be less than
optimal. In later experiments, a simple feedforward
neural network (without the concept of layers) with a
maximum of ten hidden nodes and no TDLs was used
as initial neural network configuration. Surprisingly, in
about 2 hours and the generation of 1500 controllers
this configuration could be evolved as a good
bioreactor neural controller with no more than seven
hidden nodes. The genetic algorithm used was the

same as for the first experiment, except that the weight
initialisation was in a range of [-10,+10] and no
treatment of competing conventions was used. The
control results are shown in figure 6.

The experiment was repeated several times using the
same configuration, with comparable results.
Sometimes the resulting neural controller would have
even fewer hidden nodes, with five hidden nodes as a
minimum. However, when using an initial neural
network configuration with a maximum of five (instead
of ten) hidden nodes, which should, in principle, be
sufficient, the evolution process would often fail to
produce a good controller. This indicates that the
process needs some elbow room to play with.

CONCLUSIONS

Comparing the results of Elegance (Spronck 1996)
with the results of the NeuroControl Workbench
(Jarmulak et al. 1995a) on a bioreactor simulation, we
find that they need similar training times to reach
similar (good) results on neural networks with
equivalent configurations. This shows that the
application of genetic algorithms for neural controller
design is at least competitive with conventional
techniques. Elegance also showed that in some cases
the model-based approach might work less well than
the genetic reinforcement approach, since a neural
controller might need a simpler configuration than a
neural model of the plant. Besides that, there are a
number of advantages of using genetic algorithms:

e Genetic algorithms can be used to design neural
controllers with any neural network configuration,
while conventional techniques are often limited to
specific configurations, for instance to feedforward
networks.

e Genetic algorithms need nothing more than a
controller performance evaluation to work. In
principle, such an evaluation is always available.
Conventional techniques are often dependent on
extra information, like the derivative of the error
function.

e Genetic algorithms can be used to not only
determine the neural network connection weights,
but also the architecture. Most conventional
techniques are limited to weight determination.

still, although it has been shown that the technique is
viable, it isn’t at all clear which genetic algorithm
configuration features lead to an efficient, successful
evolution run, particularly in the design of neural
controllers in a reinforcement situation. Elegance can
be used to run a large number of experiments in this
respect, and may therefore be a useful tool in this
subject of research.

REFERENCES

Goldberg, D.E. 1989. Genetic Algorithms in Search,
Optimization & Machine Learning. Addison-Wesley
Publishing Company, Inc.

Holland, J.H. 1992. Adaptation in Natural and Artificial
Systems, 2nd edition. MIT Press/Bradford Book Edition,
Cambridge, Massachusetts (first edition 1975).

Jarmulak, J. 1994. NeuroControl Workbench. MSc thesis,
Delft University of Technology, Faculty of Technical
Mathematics and Informatics, Delft.

Jarmulak, J.; E.J.H. Kerckhoffs; and L.J.M. Rothkrantz.
1995a. “Universal Approach to Neural Process Control
Tlustrated on a Biomass Growth Model.” In Proceedings of
the 2nd IFAC/IFIP/EurAgEng Workshop on Artificial
Intelligence in Agriculture, Wageningen, the Netherlands.

Jarmulak, J.; E.J.H. Kerckhoffs; and L.J.M. Rothkrantz.
1995b. “A Software Environment for Neural Control of
Simulated Plants.” In Neural Network World, Volume 6,
873-892.

Maniezzo, V. 1993. “Searching among Search Spaces:
hastening the genetic evolution of feedforward neural
networks.” In Artificial Neural Nets and Genetic Algorithms,
RF. Albrecht, C.R. Reeves & N.C. Steel, eds. Springer-
Verlag, Wien, New York, 635-642.

Montana, D.J. and L. Davis. 1989. “Training Feedforward
Neural Networks Using Genetic Algorithms.” In Proceedings
of the Eleventh International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, San Mateo, California, 762-
767.

Spronck, P.HM. 1996. Elegance: Genetic Algorithms in
Neural Reinforcement Control. MSc thesis, Delft University
of Technology, Faculty of Technical Mathematics and
Informatics, Delft.

Thierens, D.; J. Suykens; J. Vandewalle; and B. de Moor.
1993. “Genetic Weight Optimization of a Feedforward
Neural Network Controller.” In Artificial Neural Nets and
Genetic Algorithms, R.F. Albrecht, C.R. Reeves & N.C.
Steel, eds. Springer-Verlag, Wien, New York, 658-663.

Whitley, D.; S. Dominic; R. Das; and C.W. Anderson. 1993.
“Genetic Reinforcement Learning for Neurocontrol
Problems.” In Machine Learning, Kluwer Academy
Publishers, Boston, Volume 13, 103-128.

AVAILABILITY OF SOFTWARE

The software presented in this paper can be downloaded via
the following WWW-pages:

http://ford.twi.tudelft. nl/~jacek/ncwb. html
{(NeuroControl Workbench, for MS-DOS).

http://web.inter.nl. net/users/p.spronck/e_eleg.htm
(Elegance, for MS-Windows 3.1, 95 and NT).

