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1 Motivation

Graph learning applications on complex networks often involve high-stakes decisions
especially in domains like healthcare, finance or social networks. That is why explain-
ability is considered relevant. A subgraph of a graph is known to explain predictions
on the graph [6]. Explainability for a graph learning task often involves highlighting
an explanatory sub-graph, consisting of edges contributing the most to a certain out-
come. However, finding the explanatory subgraph with arbitrary structure may be less
meaningful then finding the recurring pattern in the graph. This work stems from the
question if the entire explanatory subgraph, or the motifs representing the isomorphic
subgraphs that explains the prediction. Since the motif can break down the explaining
subgraph, it provides for a more detailed explanation. At the same time, motif-based
explanations compress the information in the larger explanatory subgraph to smaller
motifs, providing for sparser explanations.

1.1 Subgraph motifs

A motif M is a set of all graphs, G = (V ,E ), E = (u,v)|u,v∈ V of specific labeling of
the nodes in V that are isomorphic to the motif. Then, M = {G} and for every G ∈M
there is a mapping m : (u,v)←→ (m(u),m(v)) for every (u,v) ∈ E and (m(u),m(v)) ∈
EM , (VM,EM) ∈M is some graph of the motif.

A motif in a graph MG [5][1][3], is understood as all subgraphs that are isomorphic
to the motif in the graph. Possible subgraphs determine the set of motifs defined on
the graph {M }G. A motif MG ∈ {M }G, projected on a graph covers the graph by the
union of subgraph isomorphic to it GM =

⋃
i Si|∀Si ⊂ G∧ Si ∈MG, GM is the graph’s

covering subgraph for the motif.

1.2 Motif explanations

Given a machine learning model which inputs a graph Gi, and a ground truth value
corresponding to the graph yi that the model predicts, the input graph can be altered
and observations can be made on the change in prediction output and performance.
Perturbations that are smaller but makes the output more different or be closer to the
truth value thought to explain the prediction better. There are several ways to perturb the
input by a motif. Examples are to use the motif’s covering subgraph GM , and remove
structural components or alter the attributes of the graph that are in the subgraphs, GM
and GM̄ = G−GM .



If motif explanations are suitable for the machine learning problem, e.g., if subgraph
patterns are relevant for the prediction on the particular problem, motifs can explain 1) if
the explanations are optimal, why and when does a machine learning performs well, 2)
and given the machine learning model is optimal, what is the most relevant information
of the input that is possibly more interpretable than the function implemented by the
machine learning model.

While the methodology is independent from the machine learning model, neural
networks’ prediction are typically more difficult to explain; what is the reason for a
model’s good performance? Can we tell when the performance is good? What is the
most concise representation of the input that contains most of the information that is re-
quired for making accurate predictions for the specific problem? Are typically difficult
to answer in the context of neural networks.

2 Methodology

The explanatory power of single motifs are determined first, taking two motifs randomly
selected as examples (shown in Figure 1). Prediction error is measured by the absolute
difference dyG = |ŷG − y| of the prediction to the original label. A motif’s effect is
measured by the difference in the prediction on the perturbed graph to the original
prediction yP− yG = ŷP− ŷG with P perturbation.

The motif is projected on the graph by finding all subgraph isomorphs of the motif
in the graph [4], and constructing the union of the subgraphs. Either the union of the
subgraph isomorphs, i.e., the covering subgraph GM ≡ M, or its complement in G,
GM̄ ≡ M̄, is used as the perturbed input P for prediction.

Experiments are conducted with three machine learning models, all are custom at-
tention networks [2] tailored to the dataset (a, a2, and b at Table 1). Two are similar
networks but (a) was trained for 200 epochs and (a2) for 15. (b) is used with different
internal activation functions and number of layers compared to (a) and (a2) and shows
different qualitative output for learning and prediction.

The chosen dataset, ogbg-molhiv [7], has a difficult machine learning problem de-
fined on it, meaning that overall it is difficult to achieve very good performance on the
dataset, despite it being fairly large in the number of feature dimensions and possibly
containing enough information for making accurate predictions. The machine learning
task is to predict whether a molecule will inhibit HIV, and there is a large class im-
balance with having more negative instances. However, this kind of dataset can benefit
from finding subgraph patterns that explain why some positive instances can be pre-
dicted well.

3 Results

Motif perturbations have larger effect on the models trained longer (Table 1, Model a
compared to a2). Removing parts of the input graph increases prediction accuracy on
the positive class of these models. Motif perturbation has different effect on the model
performing differently (Table 1, Model b), removing part of the original graph decreases
the prediction accuracy of the positive class.



Perturbation both by M and M̄ has its effect to the same direction in all cases, in
almost all cases this is larger of M. Better motif explanations should have larger (or
smaller, for negative class) prediction difference with the original graph yM − yG than
of their complement graph M̄ in G. That is because an explanation contains the most
relevant information if the least is in everything that is not part of the explanation.
If removing a motif M̄ explains the prediction as well as the motif M, then M is not
explanatory. Motifs with large (or small) yM − yG and small (large) yM̄ − yG can be
good explanations.

Given that finding all possible subgraph in a graph is already a computationally
challenging problem, evaluating all possible motifs are infeasible. Such constraint, as
large yM−yG and small yM̄−yG, suggests to be used to find explanatory motifs through
combinatorial optimization.

Prediction Motif 1 Motif 2
Model error ⟨·⟩Gi dyG dyM dyM̄ yM− yG yM̄− yG dyM dyM̄ yM− yG yM̄− yG

a
Class 1 0.5310 0.5294 0.5296 0.0018 0.0015 0.5290 0.5306 0.0021 0.0005
Class 0 0.4689 0.4705 0.4706 0.0016 0.0018 0.4708 0.4695 0.0019 0.0006

a2
Class 1 0.5504 0.5504 0.5504 1e−5 1e−7 0.5504 0.5504 1e−5 1e−6
Class 0 0.4496 0.4496 0.4496 1e−5 1e−5 0.4496 0.4496 1e−5 1e−6

b
Class 1 0.9530 0.9994 0.9769 -0.0397 -0.0239 0.9972 0.9613 -0.0330 -0.0083
Class 0 0.0512 0.0045 0.0138 -0.0473 -0.0374 0.0084 0.0375 -0.0409 -0.0138
|V |, |E | 28, 62 21, 33 20, 29 17, 27 22,37

Table 1: Table shows averaged values of prediction difference dy and values of the dif-
ference in prediction yP−yG on the perturbed graphs P (= M or M̄) and on the original
graphs G. Two motifs (Motif 1a and Motif 1b in Figure 1) are used for the perturbations
separately, providing the covering subgraphs M⊂G and their complement in G, M̄. |V |
and |E | show average node and edge values of the input graphs.

Summary. In this extended abstract it was demonstrated how to determine the explana-
tory power of single motifs. Such research is an important forerunner to determine the
explanatory power of sets of motifs, and initiates the search for methodology to find par-
ticular motifs that are optimized for their explanatory power. It also demonstrates the
usefulness of motif explanations to evaluate machine learning model’s performance,
suggesting how it is possible to explain the machine learning problem itself by the mo-
tifs ultimately.
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